Aug 16, 2018 in Falsifiable, Physics, Quick Fix
One of the best things about taking physics classes is that the equations you learn are directly applicable to the real world. Every so often, while reading a book or watching a movie, I’m seized by the sudden urge to check it for plausibility. A few scratches on a piece of paper later and I will generally know one way or the other.
One of the most amusing things I’ve found doing this is that the people who come up with the statistics for Pokémon definitely don’t have any sort of education in physics.
Takes Onix. Onix is a rock/ground Pokémon renowned for its large size and sturdiness. Its physical statistics reflect this. It’s 8.8 metres (28’) long and 210kg (463lbs).
Surely such a large and tough Pokémon should be very, very dense, right? Density is such an important tactile cue for us. Don’t believe me? Pick up a large piece of solid medal. Its surprising weight will make you take it seriously.
Apr 1, 2018 in Falsifiable, Physics, Politics
Under the Partial Test Ban Treaty (PTBT), all nuclear tests except for those underground are banned. Under the Non-Proliferation Treaty (NPT), only the permanent members of the UN Security Council are legally allowed to possess nuclear weapons. Given the public outcry over fallout that led to the PTBT and the worries over widespread nuclear proliferation that led to the NPT, it’s clear that we require something beyond pinky promises to verify that countries are meeting the terms of these treaties.
But how do we do so? How can you tell when a country tests an atomic bomb? How can you tell who did it? And how can one differentiate a bomb on the surface from a bomb in the atmosphere from a bomb in space from a bomb underwater from a bomb underground?
I’m going to focus on two efforts to monitor nuclear weapons: the national security apparatus...
Apr 30, 2017 in Model, Physics, Science
It can be hard to grasp that radio waves, deadly radiation, and the light we can see are all the same thing. How can electromagnetic (EM) radiation – photons – sometimes penetrate walls and sometimes not? How can some forms of EM radiation be perfectly safe and others damage our DNA? How can radio waves travel so much further than gamma rays in air, but no further through concrete?
It all comes down to wavelength. But before we get into that, we should at least take a glance at what EM radiation really is.
Electromagnetic radiation takes the form of two orthogonal waves. In one direction, you have an oscillating magnetic field. In the other, an oscillating electric field. Both of these fields are orthogonal to the direction of travel.
These oscillations take a certain amount of time to complete, a time which is calculated by observing the peak value...