Biology, Ethics, Literature, Philosophy

Book Review: The Righteous Mind

I – Summary

The Righteous Mind follows an argument structure I learned in high school debate club. It tells you what it’s going to tell you, it tells you it, then it reminds you what it told you. This made it a really easy read and a welcome break from The Origins of Totalitarianism, the other book I’ve been reading. Practically the very first part of The Righteous Mind proper (after the foreword) is an introduction to its first metaphor.

Imagine an elephant and a rider. They have travelled together since their birth and move as one. The elephant doesn’t say much (it’s an elephant), but the rider is very vocal – for example, she’s quick to apologize and explain away any damage the elephant might do. A casual observer might think the rider is in charge, because she is so much cleverer and more talkative, but that casual observer would be wrong. The rider is the press secretary for the elephant. She explains its action, but it is much bigger and stronger than her. It’s the one who is ultimately calling the shots. Sometimes she might convince it one way or the other, but in general, she’s buffeted along by it, stuck riding wherever it goes.

She wouldn’t agree with that last part though. She doesn’t want to admit that she’s not in charge, so she hides the fact that she’s mainly a press secretary even from herself. As soon as the elephant begins to move, she is already inventing a reason why it was her idea all along.

This is how Haidt views human cognition and decision making. In common terms, the elephant is our unconscious mind and the rider our consciousness. In Kahneman’s terms, the elephant is our System 1 and the rider our System 2. We may make some decisions consciously, but many of them are made below the level of our thinking.

Haidt illustrates this with an amusing anecdote. His wife asks him why he didn’t finish some dishes he’d been doing and he immediately weaves a story of their crying baby and barking incontinent dog preventing him. Only because he had his book draft open on his computer did he realize that these were lies… or rather, a creative and overly flattering version of the truth.

The baby did indeed cry and the dog indeed bark, but neither of these prevented him from doing the dishes. The cacophany happened well before that. He’d been distracted by something else, something less sympathetic. But his rider, his “internal press secretary” immediately came up with an excuse and told it, without any conscious input or intent to deceive.

We all tell these sorts of flattering lies reflexively. They take the form of slight, harmless embellishments to make our stories more flattering or interesting, or our apologies more sympathetic.

The key insight here isn’t that we’re all compulsive liars. It’s that the “I” that we like to think exists to run our life doesn’t, really. Sometimes we make decisions, especially ones the elephant doesn’t think it can handle (high stakes apologies anyone?), but normally decisions happen before we even think about them. From the perspective of Haidt, “I”, is really “we”, the elephant and its rider. And we need to be careful to give the elephant its due, even though it’s quiet.

Haidt devotes a lot of pages to an impassioned criticism of moral rationalism, the belief that morality is best understood and attained by thinking very hard about it. He explicitly mentions that to make this more engaging, he wraps it up in his own story of entering the field of moral psychology.

He starts his journey with Kohlberg, who published a famous account of the stages of moral reasoning, stages that culminate in rationally building a model of justice. This paradigm took the world of moral psychology by storm and reinforced the view (dating in Western civilization to the times of the Greeks) that right thought had to proceed right action.

Haidt was initially enamoured with Kohlberg’s taxonomy. But reading ethnographies and doing research in other countries began to make him suspect things weren’t as simple as Kohlberg thought. Haidt and others found that moral intuitions and responses to dilemmas differed by country. In particular, WEIRD people (people from countries that were Western, Educated, Industrialized, Rich, and Developed and most especially the most educated people in those countries) were very much able to tamp down feelings of disgust in moral problems, in a way that seemed far from universal.

For example, if asked if it was wrong for a family to eat their dog if it was killed by a car (and the alternative was burying it), students would say something along the lines of “well, I wouldn’t, but it’s gross, not wrong”. Participants recruited at a nearby McDonalds gave a rather different answer: “of course it’s wrong, why are you even asking”. WEIRD students at prestigious universities may have been working towards a rational, justice-focused explanation for morality, but Haidt found no evidence that this process (or even a focus on “justice”) was as universal as Kohlberg claimed.

That’s not to say that WEIRD students had no disgust response. In fact, trying to activate it gave even more interesting results. When asked to justify answers where disgust overpowered students sense of “well as long as no one was hurt” (e.g. consensual adult sibling incest with no chance of children), Haidt observed that people would throw up a variety of weak excuses, often before they had a chance to think the problem through. When confronted by the weakness of their arguments, they’d go speechless.

This made Haidt suspect that two entirely separate processes were going on. There was a fast one for deciding and a slower another for explanation. Furthermore, the slower process was often left holding the bag for the faster one. Intuitions would provide an answer, then the subject would have to explain it, no matter how logically indefensible it was.

Haidt began to believe that Kohlberg had only keyed in on the second, slower process, “the talking of the rider” in metaphor-speak. From this point of view, Kohlberg wasn’t measuring moral sophistication. He was instead measuring how fluidly people could explain their often less than logical moral intuitions.

There were two final nails in the coffin of ethical rationalism for Haidt. First, he learned of a type of brain injury that separated people from their moral intuitions (or as the rationalists might call them “passions”). Contrary to the rationalist expectation, these people’s lives went to hell, as they alienated everyone they knew, got fired from their jobs, and in general proved the unsuitability of pure reason for making many types of decisions. This is obviously the opposite of what rationalists predicted would happen.

Second, he saw research that suggested that in practical measures (like missing library books), moral philosophers were no more moral than other philosophy professors.

Abandoning rationalism brought Haidt to a sentimentalist approach to ethics. In this view, ethics stemmed from feelings about how the world ought to be. These feelings are innate, but not immutable. Haidt describes people as “prewired”, not “hardwired”. You might be “prewired” to have a strong loyalty foundation, but a series of betrayals and let downs early in life might convince you that loyalty is just a lie, told to control idealists.

Haidt also believes that our elephants are uniquely susceptible to being convinced by other people in face to face discussion. He views the mechanism here as empathy at least as much as logic. People that we trust and respect can point out our weak arguments, with our respect for them and positive feelings towards them being the main motive force for us listening to these criticisms. The metaphor with elephants kind of breaks down here, but this does seem to better describe the world as it is, so I’ll allow it.

Because of this, Haidt would admit that rationalism does have some purpose in moral reasoning, but he thinks it is ancillary and mainly used to convince other people. I’m not sure how testable making evolutionary conclusions about this is, but it does seem plausible for there to be selection pressure to make us really good at explaining ourselves and convincing others of our point of view.

As Haidt took this into account and began to survey peoples’ moral instincts, he saw that the ways in which responses differed by country and class were actually highly repeatable and seemed to gesture at underlying categories of people. After analyzing many, many survey responses, he and his collaborators came up with five (later six) moral “modules” that people have. Each moral module looks for violations of a specific class of ethical rules.

Haidt likens these modules to our taste-buds. The six moral tastes are the central metaphor of the second section of the book.

Not everyone has these taste-buds/modules in equal proportion. Looking at commonalities among respondents, Haidt found that the WEIRDer someone was, the less likely they were to have certain modules. Conservatives tended to have all modules in a fairly equal proportion, liberals tended to be lacking three. Libertarians were lacking a whopping four, which might explain why everyone tends to believe they’re the worst.

The six moral foundations are:


This is the moral foundation that makes us care about suffering and pain in others. Haidt speculates that it originally evolved in order to ensure that children (which are an enormous investment of resources for mammals and doubly so for us) got properly cared for. It was originally triggered only by the suffering or distress of our own children, but can now be triggered by anyone being hurt, as well as cute cat videos or baby seals.

An expanding set of triggers seems to be a common theme for these. I’ve personally speculated that this would perhaps be observed if the brain was wired for minimizing negative predictive error (i.e. not mistaking a scene in which there is a lion for a scene without a lion), rather than positive predictive error (i.e. not mistaking a scene without a lion for a scene with a lion). If you minimize positive predictive error, you’ll never be frightened by a shadow, but you might get eaten by a lion.


This is the moral foundation that makes us want everyone to do their fair share and makes us want to punish tax evaders or welfare cheats (depending on our political orientation). The evolutionary story given for this one is that it evolved to allow us to reap the benefits of two-way partnerships; it was an incentive against defecting.


This is the foundation that makes us rally around our politicians, community leaders, and sports teams, as well as the foundation that makes some people care more about people from their country than people in general. Haidt’s evolutionary explanation for this one is that it was supposed to ensure coherent groups.


This is the moral foundation that makes people obey their boss without talking back or avoid calling their parents by the first names. It supposedly evolved to allow us to forge beneficial relationships within hierarchies. Basically, it may have once been very useful to have people believe and obey their elders without question, (like e.g. when the elders say “don’t drink that water, it’s poisoned” no one does and this story can be passed down and keep people safe, without someone having to die every few years to prove that the water is indeed poisoned).


This is the moral foundation that makes people on the right leery of pre-marital sex and people on the left leery of “chemicals”. It shows up whenever we view our bodies as more than just our bodies and the world as more than just a collection of things, as well as whenever we feel that something makes us “spiritually” dirty.

The very plausible explanation for this one is that it evolved in response to the omnivore’s dilemma: how do we balance the desire for novel food sources with the risk they might poison us? We do it by avoiding anything that looks diseased or rotted. This became a moral foundation as we slowly began applying it to stuff beyond food – like other people. Historically, the sanctity moral framework was probably responsible for the despised status of lepers.


This moral foundation is always in tension with Authority/Subversion. It’s the foundation that makes us want to band together against and cast down anyone who is aggrandizing themselves or using their power to mistreat another.

Haidt suggests that this evolved to allow us to band together against “alpha males” and check their power. In his original surveys, it was part of Fairness/Cheating, but he found that separating it gave him much more resolving power between liberals and conservatives.

Of these six foundations, Haidt found that libertarians only had an appreciable amount of Liberty/Oppression and Fairness/Cheating and of these two, Liberty/Oppression was by far the stronger. While the other foundations did exist, they were mostly inactive and only showed up under extreme duress. For liberals, he found that they had Care/Harm, Liberty/Oppression, and Fairness/Cheating (in that order).

Conservatives in Haidt’s survey had all six moral foundations, like I said above. Care/Harm was their strongest foundation, but by having appreciable amounts of Loyalty/Betrayal, Authority/Subversion, and Sanctity/Degradation, they would occasionally overrule Care/Harm in favour of one or another of these foundations.

Haidt uses these moral foundations to give an account of the “improbable” coalition between libertarians and social conservatives that closely matches the best ones to come out of political science. Basically, liberals and libertarians are descended (ideologically, if not filially) from those who embraced the enlightenment and the liberty it brought. About a hundred years ago (depending on the chronology and the country), the descendants of the enlightenment had a great schism, with some continuing to view the government as the most important threat to liberty (libertarians) and others viewing corporations as the more pressing threat (liberals). Liberals took over many auspices of the government and have been trying to use it to guarantee their version of liberty (with mixed results and many reversals) ever since.

Conservatives do not support this project of remaking society from the top down via the government. They believe that liberals want to change too many things, too quickly. Conservatives aren’t opposed to the government qua government. In fact, they’d be very congenial to a government that shared their values. But they are very hostile to a liberal, activist government (which is rightly or wrongly how conservatives view the governments of most western nations) and so team up with libertarians in the hopes of dismantling it.

This section, which characterized certain political views as stemming from “deficiencies” in certain “moral modules –, in a way that is probably hereditary – made me pause and wonder if this is a dangerous book. I’m reminded of Hannah Arendt talking about “tolerance” for Jews committing treason in The Origins of Totalitarianism.

It is an attraction to murder and treason which hides behind such perverted tolerance, for in a moment it can switch to a decision to liquidate not only all actual criminals but all who are “racially” predestined to commit certain crimes. Such changes take place whenever the legal and political machine is not separated from society so that social standards can penetrate into it and become political and legal rules. The seeming broad-mindedness that equates crime and vice, if allowed to establish its own code of law, will invariably prove more cruel and inhuman than laws, no matter how severe, which respect and recognize man’s independent responsibility for his behavior.

That said, it is possible for inconvenient or dangerous things to be true and their inconvenience or danger has no bearing on their truth. If Haidt saw his writings being used to justify or promote violence, he’d have a moral responsibility to decry the perpetrators. Accepting that sort of moral responsibility is, I believe, part of the responsibility that scientists who deal with sensitive topics must accept. I do not believe that this responsibility precludes publishing. I firmly believe that only right information can lead to right action, so I am on the whole grateful for Haidt’s taxonomy.

The similarities between liberals and libertarians extend beyond ethics. Both have more openness to experience and less of a threat response than conservatives. This explains why socially, liberals and libertarians have much more in common than liberals and conservatives.

Moral foundation theory gave me a vocabulary for some of the political writing I was doing last year. After the Conservative (Party of Canada) Leadership Convention, I talked about social conservative legislation as a way to help bind people to collective morality. I also talked about how holding other values very strongly and your values not at all can make people look diametrically opposed to you.

The third and final section of The Righteous Mind further focuses on political tribes. Its central metaphor is that humans are “90% chimp, 10% bee”. It’s central purpose is an attempt to show how humans might have been subject to group selection and how our groupishness is important to our morality.

Haidt claims that group selection is heresy in evolutionary biology (beyond hive insects). I don’t have the evolutionary biology background to say if this is true or not, although this does match how I’ve seen it talked about online among scientifically literate authors, so I’m inclined to believe him.

Haidt walks through the arguments against group selection and shows how they are largely sensible. It is indeed ridiculous to believe that genes for altruism could be preserved in most cases. Imagine a gene that would make deer more likely to sacrifice itself for the good of the herd if it seemed that was the only way to protect the herd’s young. This gene might help more deer in the herd attain adulthood, but it would also lead to any deer who had it having fewer children. There’s certainly an advantage to the herd if some members have this gene, but there’s no advantage to the carriers and a lot of advantage to every deer in the herd who doesn’t carry it. Free-riders will outcompete sacrificers and the selfless gene will get culled from the herd.

But humans aren’t deer. We can be selfish, yes, but we often aren’t and the ways we aren’t can’t be simply explained by greedy reciprocal altruism. If you’ve ever taken some time out of your day to help a lost tourist, congratulations, you’ve been altruistic without expecting anything in return. That people regularly do take time out of their days to help lost tourists suggests there might be something going on beyond reciprocal altruism.

Humans, unlike deer, have the resources and ability to punish free riders. We expect everyone to pitch in and might exile anyone who doesn’t. When humans began to form larger and larger societies, it makes sense that the societies who could better coordinate selfless behaviour would do better than those that couldn’t. And this isn’t just in terms of military cohesion (as the evolutionary biologist Lesley Newson had to point out to Haidt). A whole bunch of little selfless acts ­– sharing food, babysitting, teaching – can make a society more efficient than its neighbours at “turning resources into offspring”.

A human within the framework of society is much more capable than a human outside of it. I am only able to write this and share it widely because a whole bunch of people did the grunt work of making the laptop I’m typing it on, growing the food I eat, maintaining our communication lines, etc. If I was stuck with only my own resources, I’d be carving this into the sand (or more likely, already eaten by wolves).

Therefore, it isn’t unreasonable to expect that the more successful and interdependent a society could become, the more it would be able to outcompete, whether directly or indirectly its nearby rivals and so increase the proportion of its conditionally selfless genes in the human gene pool.

Conditional selflessness is a better description of the sorts of altruism we see in humans. It’s not purely reciprocal as Dawkins might claim, but it isn’t boundless either. It’s mostly reserved for people we view as similar to us. This doesn’t need to mean racially or religiously. In my experience, a bond as simple as doing the same sport is enough to get people to readily volunteer their time for projects like digging out and repairing a cracked foundation.

The switch from selfishness to selflessly helping out our teams is called “the hive switch” by Haidt. He devotes a lot of time to exploring how we can flip it and the benefits of flipping it. I agree with him that many of the happiest and most profound moments of anyone’s life come when the switch has been activated and they’re working as part of a team.

The last few chapters are an exploration of how individualism can undermine the hive switch and several mistakes liberals make in their zeal to overturn all hierarchies. Haidt believes that societies have both social capital (the bounds of trust between people) and moral capital (the society’s ability to bind people to collective values) and worries that liberal individualism can undermine these to the point where people will be overall worse off. I’ll talk more about moral capital later in the review.

II – On Shaky Foundations

Anyone who reads The Righteous Mind might quickly realize that I left a lot of the book out of my review. There was a whole bunch of supporting evidence about how liberals and conservatives “really are” or how they differ that I have deliberately omitted.

You may have heard that psychology is currently in the midst of a “replication crisis“. Much (I’d crudely estimate somewhere between 25% and 50%) of the supporting evidence in this book has been a victim of this crisis.

Here’s what the summary of Chapter 3 looks like with the offending evidence removed:

Pictured: Page 82 of my edition of The Righteous Mind, after some “minor” corrections. Text is © 2012 Jonathon Haidt. Used here for purposes of commentary and criticism.


Here’s an incomplete list of claims that didn’t replicate:

  • IAT tests show that we can have unconscious prejudices that affect how we make social and political judgements (1, 2, 3 critiques/failed replications). Used to buttress the elephant/rider theory of moral decisions.
  • Disgusting smells can make us more judgemental (failed replication source). Used as evidence that moral reasoning can be explained sometimes by external factors, is much less rational than we’d like to believe.
  • Babies prefer a nice puppet over a mean one, even when pre-verbal and probably lacking the context to understand what is going on (failed replication source). Used as further proof for how we are “prewired” for certain moral instincts.
  • People from Asian societies are better able to do relative geometry and less able to absolute geometry than westerners (failed replication source). This was used to make the individualistic morality of westerners seem inherent.
  • The “Lady Macbeth Effect” showed a strong relationship between physical and moral feelings of “cleanliness” (failed replication source). Used to further strengthen the elephant/rider analogy.

The proper attitude with which to view psychology studies these days is extreme scepticism. There are a series of bad incentives (it’s harder and less prestigious to publish negative findings, publishing is necessary to advance in your career) that have led to scientists in psychology (and other fields) to inadvertently and advertently publish false results. In any field in which you expect true discoveries to be rare (and I think “interesting and counter-intuitive things about the human brain fits that bill), you shouldn’t allow any individual study to influence you very much. For a full breakdown of how this can happen even when scientists check for statistical significance, I recommend reading “Why Most Published Research Findings Are False” (Ioannidis 2005).

Moral foundations theory appears to have escaped the replication crisis mostly unscathed, (as have Tverskey and Kahneman’s work on heuristics, something that made me more comfortable including the elephant/rider analogy). I think this is because moral foundations theory is primarily a descriptive theory. It grew out of a large volume of survey responses and represents clusters in those responses. It makes little in the way of concrete predictions about the world. It’s possible to quibble with the way Haidt and his collaborators drew the category boundaries. But given the sheer volume of responses they received – and the fact that they based their results not just on WEIRD individuals – it’s hard to disbelieve that they haven’t come up with a reasonable clustering of the possibility space of human values.

I will say that stripped of much of its ancillary evidence, Haidt’s attack on rationalism lost a lot of its lustre. It’s one thing to believe morality is mostly unconscious when you think that washing your hands or smelling trash can change how moral you act. It’s quite another when you know those studies were fatally flawed. The replication crisis fueled my inability to truly believe Haidt’s critique of rationality. This disbelief in turn became one of the two driving forces in my reaction to this book.

Haidt’s moral relativism around patriarchal cultures was the other.

III – Less and Less WEIRD

It’s good that Haidt looked at a variety of cultures. This is a thing few psychologists do. There’s historically been an alarming tendency to run studies on western undergraduate students, then declare “this is how people are”. This would be fine if western undergraduates were representative of people more generally, but I think that assumption was on shaky foundations even before moral foundation theory showed that morally, at least, it was entirely false.

Haidt even did some of this field work himself. He visited South America and India to run studies. In fact, he mentioned that this field work was one of the key things that made him question the validity of western individualistic morality and wary of morality that didn’t include the sanctity, loyalty, and authority foundations.

His willingness to get outside of his bubble and to learn from others is laudable.


There is one key way in which Haidt never left his bubble, a way which makes me inherently suspicious of all of his defences of the sanctity, authority, and loyalty moral foundations. Here’s him recounting his trip to India. Can you spot the fatal omission?

I was told to be stricter with my servants, and to stop thanking them for serving me. I watched people bathe in and cook with visibly polluted water that was held to be sacred. In short, I was immersed in a sex-segregated, hierarchically stratified, devoutly religious society, and I was committed to understanding it on its own terms, not on mine.

It only took a few weeks for my dissonance to disappear, not because I was a natural anthropologist but because the normal human capacity for empathy kicked in. I liked these people who were hosting me, helping me, and teaching me. Wherever I went, people were kind to me. And when you’re grateful to people, it’s easier to adopt their perspective. My elephant leaned toward them, which made my rider search for moral arguments in their defense. Rather than automatically rejecting the men as sexist oppressors and pitying the women, children, and servants as helpless victims, I began to see a moral world in which families, not individuals, are the basic unit of society, and the members of each extended family (including its servants) are intensely interdependent. In this world, equality and personal autonomy were not sacred values. Honoring elders, gods, and guests, protecting subordinates, and fulfilling one’s role-based duties were more important.

Haidt tried out other moral systems, sure, but he tried them out from the top. Lois McMaster Bujold once had a character quip: “egalitarians adjust to aristocracies just fine, as long as they get to be the aristocrats”. I would suggest that liberals likewise find the authority framework all fine and dandy, as long as they have the authority.

Would Haidt have been able to find anything worth salvaging in the authority framework if he’d instead been a female researcher, who found herself ignored, denigrated, and sexually harassed on her research trip abroad?

It’s frustrating when Haidt is lecturing liberals on their “deficient” moral framework while simultaneously failing to grapple with the fact that he is remarkably privileged. “Can’t you see how this other society knows some moral truths [like men holding authority over woman] that we’ve lost” is much less convincing when the author of the sentence stands to lose absolutely nothing in the bargain. It’s easy to lecture others on the hard sacrifices society “must” make – and far harder to look for sacrifices that will mainly affect you personally.

It is in this regard that I found myself wondering if this might have been a more interesting book if it had been written by a woman. If the hypothetical female author were to defend the authority framework, she’d actually have to defend it, instead of hand-waving the defence with a request that we respect and understand all ethical frameworks. And if this hypothetical author found it indefensible, we would have been treated to an exploration of what to do if one of our fundamental ethical frameworks was flawed and had to be discarded. That would be an interesting conversation!

Not only that, but perhaps a female author would have given more pages to the observation that woman and children’s role in societal altruism was just as important as that of men (as child-rearing is a more reliable way to demonstrate and cash-in on groupishness than battle) have been fully explored, instead of relegated to a brief note at the end of the chapter on group selection. This perspective is genuinely new to me and I wanted to see it developed further.

Ultimately, Haidt’s defences of Authority/Subversion, Loyalty/Betrayal, and Sanctity/Degradation fell flat in the face of my Care/Harm and Liberty/Oppression focused moral compass. Scott Alexander once wrote about the need for “a solution to the time-limitedness of enlightenment that works from within the temporal perspective”. By the same token, I think Haidt fails to deliver a defence of conservatism or anything it stands for that works from within the liberal Care/Harm perspective. Insofar as his book was meant to bridge inferential gaps and political divides, this makes it a failure.

That’s a shame, because arguments that bridge this divide do exist. I’ve read some of them.

IV – What if Liberals are Wrong?

There is a principle called “Chesterton’s Fence”, which comes from the famed Catholic conservative and author G.K. Chesterton. It goes like this: if you see a fence blocking the road and cannot see the reason for it to be there, should you remove it? Chesterton said
“no!”, resoundingly. He suggested you should first understand the purpose of the fence. Only then may you safely remove it.

There is a strain of careful conservatism that holds Chesterton’s fence as its dearest parable. Haidt makes brief mention of this strain of thought, but doesn’t expound on it successfully. I think it is this thought and this thought only that can offer Care/Harm focused liberals like myself a window into the redeeming features of the conservative moral frameworks.

Here’s what the argument looks like:

Many years ago, western nations had a unified moral framework. This framework supported people towards making long term decisions and acting in a pro-social manner. There are many people who want to act differently than they would if left to their own devices and this framework helped them to do that.

Liberals began to dismantle this system in the sixties. They saw hierarchies and people being unable to do the things they wanted to do, so tried to take down the whole edifice without first checking if any of it was doing anything important.

This strand of conservatism would argue that it was. They point to the increasing number of children born to parents who aren’t married (although increasingly these parents aren’t teens, which is pretty great), increasing crime (although this has started to fall after we took lead out of gasoline), increasing atomisation, decreasing church attendance, and increasing rates of anxiety and depression (although it is unclear how much of this is just people feeling more comfortable getting treatment).

Here’s the thing. All of these trends affect well educated and well-off liberals the least. We’re safe from crime in good neighbourhoods. We overwhelming wait until stable partnerships to have children. We can afford therapists and pills to help us with any mental health issues we might have; rehab to help us kick any drug habits we pick up.

Throwing off the old moral matrix has been an unalloyed good for privilege white liberals. We get to have our cake and eat it too – we have fun, take risks, but know that we have a safety net waiting to catch us should we fall.

The conservative appeal to tradition points out that our good time might be at the expense of the poor. It asks us if our hedonistic pleasures are worth a complete breakdown in stability for people with fewer advantages that us. It asks us consider sacrificing some of these pleasures so that they might be better off. I know many liberals who might find the sacrifice of some of their freedom to be a moral necessity, if framed this way.

But even here, social conservatism has the seeds of its own undoing. I can agree that children do best when brought up by loving and committed parents who give them a lot of stability (moving around in childhood is inarguably bad for many kids). Given this, the social conservative opposition to gay marriage (despite all evidence that it doesn’t mess kids up) is baffling. The sensible positon would have been “how can we use this to make marriage cool again“, not “how long can we delay this”.

This is a running pattern with social conservatism. It conserves blindly, without giving thought to what is even worth preserving. If liberals have some things wrong, that doesn’t automatically mean that the opposite is correct. It’s disturbingly easy for people on both sides of an issue to be wrong.

I’m sure Haidt would point out that this is why we have the other frameworks. But because of who I am, I’m personally much more inclined to do things in the other direction – throw out most of the past, then re-implement whatever we find to be useful but now lacking.

V – What if Liberals Listened?

In Berkeley, California, its environs, and assorted corners of the Internet, there exists a community that calls themselves “Rationalists”. This moniker is despite the fact that they agree with Haidt as to the futility of rationalism. Epistemically, they tend to be empiricists. Ethically, non-cognitivist utilitarians. Because they are largely Americans, they tend to be politically disengaged, but if you held them at gunpoint and demanded they give you a political affiliation, they would probably either say “liberal” or “libertarian”.

The rationalist community has semi-public events that mimic many of the best parts of religious events, normally based around the solstices (although I also attended a secular Seder when I visited last year).

This secular simulacrum of a religion has been enough to fascinate at least one Catholic.

The rationalist community has managed to do the sort of thing Haidt despaired of: create a strong community with communal morality in a secular, non-authoritarian framework. There are communal norms (although they aren’t very normal; polyamory and vegetarianism or veganism are very common). People tend to think very hard before having children and take care ensuring that any children they have will have a good extended support structure. People live in group houses, which combats atomisation.

This is also a community that is very generous. Many of the early adherents of Effective Altruism were drawn from the rationalist community. It’s likely that rationalists donate to charity in amounts more similar to Mormons than atheists (with the added benefit of almost all of this money going to saving lives, rather than proselytizing).

No community is perfect. This is a community made up of people. It has its fair share of foibles and megalomanias, bad actors and jerks. But it represents something of a counterpoint to Haidt’s arguments about the “deficiency” of a limited framework morality.

Furthermore, its altruism isn’t limited in scope, the way Haidt believes all communal altruism must necessarily be. Rationalists encourage each other to give to causes like malaria eradication (which mainly helps people in Africa), or AI risk (which mainly helps future people). Because there are few cost effective local opportunities to do good (for North Americans), this global focus allows for more lives to be saved or improved per dollar spent.

This is all of it, I think, the natural result of thoughtful people throwing away most cultural traditions and vestiges of traditionalist morality, then seeing what breaks and fixing those things in particular. It’s an example of what I wished for at the end of the last section applied to the real world.

VI – Is or Ought?

I hate to bring up the Hegelian dialectic, but I feel like this book fits neatly into it. We had the thesis: “morality stems from rationality” that was so popular in western political thought. Now we have the antithesis: “morality and rationality are separate horses, with rationality subordinate – and this is right and proper”.

I can’t wait for someone other than Haidt to a write a synthesis; a view that rejects rationalism as the basis of human morality but grapples with the fact that we yearn for perfection.

Haidt, in the words of Joseph Heath, thinks that moral discourse is “essentially confabulatory”, consisting only of made up stories that justify our moral impulses. There may be many ways in which this is true, but it doesn’t account for the fact that some people read Peter Singer’s essay “Famine, Affluence, and Morality” and go donate much of their money to the global poor. It doesn’t account for all those who have listened to the Sermon on the Mount and then abandoned their possessions to live a monastic life.

I don’t care whether you believe in The Absolute, or God, or Allah, or The Cycle of Rebirth, or the World Soul, or The Truth, or nothing at all. You probably have felt that very human yearning to be better. To do better. You’ve probably believed that there is a Good and it can perhaps be comprehended and reached. Maybe this is the last vestiges of my atrophied sanctity foundation talking, but there’s something base about believing that morality is solely a happy accident of how we evolved.

The is/ought fallacy occurs when we take what “is” and decide it is what “ought” to be. If you observe that murder is part of the natural order and conclude that it is therefore moral, you have committed this fallacy.

Haidt has observed the instincts that build towards human morality. His contributions to this field have helped make many things clear and make many conflicts more understandable. But in deciding that these natural tastes are the be-all and end-all of human morality, by putting them ahead of reason, religion, and every philosophical tradition, he has committed this fundamental error.

At the start of the Righteous Mind, Haidt approvingly mentions those scientists who once thought that ethics could be taken away from philosophers and studied instead only by them.

But science can only ever tell us what is, never what ought to be. As a book about science, The Righteous Mind is a success. But as a work on ethics, as an expression of how we ought to behave, it is an abysmal failure.

In this area, the philosophers deserve to keep their monopoly a little longer.

Advice, All About Me, Biology

Not Making That Mistake Again: A Quick Dive Into Vegetarian Nutrition

[Content Note: Discussion of diet]

The first time I tried vegetarianism, I ended up deficient in B12. Since then, I’ve realized just how bad vitamin B12 deficiency is (hint: it can cause irreversible neural damage) and resolved to get it right this time.

I’m currently eating no meat, very little milk, almost no eggs, and a fair amount of cheese. I consider clams, oysters, and mussels to be morally (if not taxonomically) vegetables, but am too lazy to eat them regularly. To figure out what this diet put me at risk for, I trolled PubMed [1] until I found a recent article arguing for a vegan diet, then independently checked their nutritional recommendations.

Based on this, I’ve made a number of changes to my diet. I now take two vitamins in the morning and a slew of supplements in sugar-free fruit juice when I get home from work [2]. I hope the combined effect of this will be to protect me from any nutritional problems.

Pictured: the slew. Next: The science!

Once I went to all the work of collecting information and reading through paper abstracts, I realized that other people the same situation might find this research helpful. I’ve chosen to present everything as my diet, not my recommendations. This is what is currently working for me, not necessarily what is “correct” or what would work for anyone else. Diet is very personal and I’m no expert, so I’ve taken great pains to avoid the word “should” here.

That caveat out of the way, let’s get into the details!


Eating cheese gives a relatively easy (and low suffering) source of complete protein, but I didn’t want all of my protein to come from cheese. Therefore, it was heartening to find there are many easy ways to get complete protein from plants. These include combinations (like hummus + pitas or rice + beans) or quinoa.

I try to make some of my lunches revolve around these sources, rather than just cheese.

I’ve decided to supplement my protein intake with protein powder, because I found it hard to get enough protein (I’m aiming for 1g/kg daily, to be on the safe side, estimates of the minimum daily requirements range from at least 0.83g/kg/d to 0.93kg/day and I’m rather more active than the average North American, especially in the summer) with my limited appetite even when I was eating meat. I first tried whey, but found this incredibly hard on my stomach, so I’ve shifted to an unflavoured multiple source vegetable protein that I find not at all unpleasant when mixed with fruit juice.


It seems to be kind of hard to become iron deficient; the closer anyone gets to deficiency, the more effective their body becomes at pulling in iron and holding onto what it already has. This is good for vegetarians, because iron from plants is generally not very bioavailable and it’s harder to get iron when consuming significant calcium at the same time (e.g. a spinach salad with cheese or tofu isn’t that great a source of iron, until your body gets desperate for it).

Even better than this is the fact that iron is one of the rare things that is actually subject to “one weird trick”, namely, iron absorption is greatly aided by vitamin C, even in the presence of calcium. I expect to meet my iron needs via a combination of leafy greens salads + orange slices, protein powder + fruit juice, and oatmeal.

Vitamin B12

As far as I can tell, my diet doesn’t include adequate B12 on its own, so I’m supplementing with 1000mcg sublingually each morning. If I did more of my own cooking, I’d consider nutritional yeast grown in B12 rich media, which seem to be effective in small scale trials and anecdotally among people I know. I can’t figure out if probiotics work or not; the study above says no. Another study I found said yes, but they were giving out the probiotics in yoghurt, which is naturally a good source of vitamin B12. This baffling decision makes me consider the study hopelessly confounded and has me overall pessimistic about probiotics.

I was frightened when I learned that folic acid fortification is very effective at preventing B12 deficiency driven anemia, but not effective against B12 deficiency driven neural damage (so the neural damage can sneak up with no warning). The NIH recommends keeping folic acid consumption below 1g/day, which can be difficult to do when many fortified foods contain much more folic acid than they claim to. If I was eating more breads or cereals I’d be worried about this. For now, I’m just filing it away as a thing to remember; if I ever start eating more bread and cereal, I’m going to want to be very careful to ensure I’m consuming enough B12.

I take B12 especially seriously because I take proton pump inhibitors, which have been associated with an increased risk of B12 deficiency.


Calcium is a mess.

Here are studies I’ve found about calcium:

One explanation for this is that the meta-analysis that finds no significant relationship between fracture risk and calcium intake didn’t find anyone with calcium levels low enough to observe significant effects. That would mean that the study that found vegans broke bones more often found the effect because the vegans they studied were so low on calcium.

Except that study is barely significant (the relative risk lower bound includes 1.02). Barely significant study + meta-analysis that turns up nothing points pretty strongly at “this was only significant because of P-hacking”.

Since yoghurt is apparently an ideal protein source for cycling recovery and three small containers of yoghurt provides an ideal amount of protein for cycling recovery (and Walmart gives a deal if you buy three cases of 4 of these, which makes it cheap to mix and match flavours), I will probably continue to have significant amounts of yoghurt (and therefore lots of extra calcium) whenever I’m cycling. This will make me feel a bit better about my mountain biking related fracture risk. Otherwise, I’m not going to worry about calcium intake (remember: I am eating plenty of cheese).

I am glad I looked into calcium though, because I found something really cool: Chinese vegetables (like Bok Choi, Chinese cabbage flower leaves, Chinese mustard greens, and Chinese spinach) provide calcium that is much more bioavailable than many western vegetables. I wonder if this is related to prevalence of milk drinking across cultures?

Vitamin D

Vitamin D is important for increasing absorption of calcium. Since Vitamin D is synthesized in the skin in response to light and I live in Canada, I’m pretty likely to be deficient in it, at least in the winter (something like 1 in 35 Canadians are). There was a story going around that the government wouldn’t pay for most vitamin D testing because Canadians are assumed to be deficient in it, but according to the Toronto Star article above, the real reason is that so many charlatans have claimed it can do everything under the sun that demand for tests was becoming a wasteful drain on funds.

My plan is to take a D3 supplement in the months where I don’t regularly wear shorts and a t-shirt. Given that I cycle to work and frequently walk around town, I expect to get more than enough D3 when my skin is actually being exposed to sunlight.

Omega-3 Fatty Acids

From what I read, the absolute level of these is less important that the ratio of Omega-3 fatty acids to Omega-6 fatty acids. An ideal ratio is close to 1:1. The average westerner has a ratio closer to 16:1. While it is clear that this isn’t just a vegetarian problem, it seems like omnivores who eat a lot of fish have a healthier ratio. Given that a good ratio is associated with pretty much every good thing under the sun (is this why Japan has such high life expectancies?), I’m pretty motivated to get my ratio to the sweet spot.

As far as I could tell, there was once controversy as to whether non-animal sources of Omega-3 fatty acids could be adequate, but that looks to be cleared up in favour of the vegetarian sources. This is good, because it means that I can follow the recommendations in this paper and consume about 6g of unheated flaxseed oil daily to meet my Omega-3 needs. This goes pretty easily into my fruit juice mixture with my protein powder and creatine.


There’s some evidence (although no meta-analyses that I could find) that creatine improves cognitive performance in vegetarians (although not in omnivores, probably because it is present in meat [3]). I’ve decided to take 5g a day because it seems to be largely risk free and it also makes exercise feel somewhat easier.

That’s everything I was able to dig up in a few hours of research. If I’ve made any horrible mistakes, I’d very much like to hear about them.


[1] I like PubMed because it doesn’t index journals unless they meet certain standards of quality. This doesn’t ensure anything, but it does mean I don’t have to constantly check the impact factor and editorial board of anything I read. ^

[2] The timing is based on convenience, not science. The fruit juice is actually important, because the vitamin C in it makes the iron in my protein powder more bio-available. It also makes the whole mixture palatable, which is what I originally chose it for. ^

[3] Although people I know have also speculated that this might just be the effect of poor diet. That is to say, if you’re studying university vegetarians, you might be primarily studying people who recently adopted vegetarianism and (like I was the first time I tried it) are deficient in a few important things because they’re restricting what already tends to be a somewhat poor student diet. A definitive mechanism will probably have to wait for many more studies. ^

Literature, Science

Book Review: The Singularity is Near

I recently read The Singularity is Near as part of a book club and figured a few other people might benefit from hearing what I got out of it.

First – it was a useful book. I shed a lot of my skepticism of the singularity as I read it. My mindset has shifted from “a lot of this seems impossible” to “some of this seems impossible, but a lot of it is just incredibly hard engineering”. But that’s because I stuck with it – something that probably wouldn’t have happened without the structure of a book club.

I’m not sure Kurzweil is actually the right author for this message. Accelerando (by Charles Stross) covered much of the same material as Singularity, while being incredibly engaging. Kurzweil’s writing is technically fine – he can string a sentence together and he’s clear – but incredibly repetitious. If you read the introduction, the introduction of each chapter, all of Chapter 4 (in my opinion, the only consistently good part of the book proper), and his included responses to critics (the only other interesting part of the whole tome) you’ll get all the worthwhile content, while saving yourself a good ten hours of hearing the same thing over and over and over again. Control-C/Control-V may have been a cheap way for Kurzweil to pad his word count, but it’s expensive to the reader.

I have three other worries about Kurzweil as a futurist. One deals with his understanding of some of the more technical aspects of what he’s talking about, especially physics. Here’s a verbatim quote from Singularity about nuclear weapons:

Alfred Nobel discovered dynamite by probing chemical interactions of molecules. The atomic bomb, which is tens of thousands of times more powerful than dynamite, is based on nuclear interactions involving large atoms, which are much smaller scales of matter than large molecules. The hydrogen bomb, which is thousands of times more powerful than an atomic bomb, is based on interactions involving an even smaller scale: small atoms. Although this insight does not necessarily imply the existence of yet more powerful destructive chain reactions by manipulating subatomic particles, it does make the conjecture [that we can make more powerful weapons using sub-atomics physics] plausible.

This is false on several levels. First, uranium and plutonium (the fissile isotopes used in atomic bombs) are both more massive (in the sense that they contain more matter) than the nitroglycerine in dynamite. Even if fissile isotopes are smaller in one dimension, they are on the same scale as the molecules that make up high explosives. Second, the larger energy output from hydrogen bombs has nothing to do with the relative size of hydrogen vs. uranium. Long time readers will know that the majority of the destructive output of a hydrogen bomb actually comes from fission of the uranium outer shell. Hydrogen bombs (more accurately thermonuclear weapons) derive their immense power from a complicated multi-step process that liberates a lot of energy from the nuclei of atoms.

Kurzweil falling for this plausible (but entirely incorrect) explanation doesn’t speak well of his ability to correctly pick apart the plausible and true from the plausible and false in fields he is unfamiliar with. But it’s this very picking apart that is so critical for someone who wants to undertake such a general survey of science.

My second qualm emerges when Kurzweil talks about AI safety. Or rather, it arises from the lack of any substantive discussion of AI safety in a book about the singularity. As near as I can tell, Kurzweil believes that AI will emerge naturally from attempts to functionally reverse engineer the human brain. Kurzweil believes that because this AI will be essentially human, there will be no problems with value alignment.

This seems very different from the Bostromian paradigm of dangerously misaligned AI: AI with ostensibly benign goals that turn out to be inimical to human life when taken to their logical conclusion. The most common example I’ve heard for this paradigm is an industrial AI tasked with maximizing paper clip production that tiles the entire solar system with paper clips.

Kurzweil is so convinced that the first AI will be based on reverse engineering the brain that he doesn’t adequately grapple with the orthogonality thesis: the observation that intelligence and comprehensible (to humans) goals don’t need to be correlated. I see no reason to believe Kurzweil that the first super-intelligence will be based off a human. I think to believe that it would be based on a human, you’d have to assume that various university research projects will beat Google and Facebook (who aren’t trying to recreate functional human brains in silica) in the race to develop a general AI. I think that is somewhat unrealistic, especially if there are paths to general intelligence that look quite different from our brains.

Finally, I’m unhappy with how Kurzweil’s predictions are sprinkled throughout the book, vague, and don’t include confidence intervals. The only clear prediction I was able to find was Kurzweil’s infamously false assertion that by ~2010, our computers would be split up and worn with our clothing.

It would be much easier to assess Kurzweil’s accuracy as a predictor if he listed all of his predictions together in a single section, applied to them clear target dates (e.g. less vague than: “in the late 2020s”), and gave his credence (as it stands, it is hard to distinguish between things Kurzweil believes are very likely and things he views as only somewhat likely). Currently any attempts to assess Kurzweil’s accuracy are very sensitive to what you choose to view as “a prediction” and how you interpret his timing. More clarity would make this unambiguous.

Outside of Kurzweil’s personal suitability as an author and advocate (and his sagacity), I have one beef with singulatarian thought in general. It’s becoming increasingly clear that the silicon paradigm of computing will soon come to the end of its exponential growth. Switching to something like indium gallium arsenide and moving key processes to more optimized chips will buy a bit more time, but doesn’t represent a fundamental paradigm shift of the sort that gets us around the tunneling problem.

Furthermore, we’ve already began to bump up against the limit on clock speed in silicon; we can’t really run silicon chips at higher clock rates without melting them. This is unfortunate, because speed ups in clock time are much nicer than increased parallelism. Almost all programs benefit from quicker processing, while only certain programs benefit from increased parallelism. This isn’t an insurmountable obstacle when it comes to things like artificial intelligence (the human brain has a very slow clock speed and massive parallelism and it’s obviously good enough to get lots done), but it does mean that some things that Kurzweil were counting on to get quicker and quicker have stalled out (the book was written just as the Dennard Scaling began to break down).

All this means that the exponential growth that is supposed to drive the singularity is about to fizzle out… maybe. Kurzweil is convinced that the slowdown in silicon will necessarily lead to a paradigm shift to something else. But I’m not sure what it will be. He talks a bit about graphene, but when I was doing my degree in nanotechnology engineering, the joke among the professors was that graphene could do anything… except make it out of the lab.

Kurzweil has an almost religious faith that there will be another paradigm shift, keeping his exponential trend going strong. And I want to be really clear that I’m not saying there won’t be. I’m just saying there might not be. There is no law of the universe that says that we have to have convenient paradigm shifts. We could get stuck with linear (or even logarithmic) incremental improvements for years, decades, or even centuries before we resume exponential growth in computing power.

It does seem like ardent belief in the singularity might attract more religiously minded atheists. Kurzweil himself believes that it is our natural destiny to turn the whole universe into computational substrate. Identifying god with the most holy and perfect (in fine medieval tradition; there’s something reminiscent of Anselm in Kurzweil’s arguments), Kurzweil believes that once every atom in the universe sings with computation, we will have created god.

I don’t believe that humanity has any grand destiny, or that the arc of history bends towards anything at all in particular. And I by no means believe that the singularity is assured, technologically or socially. But it is a beautiful vision. Human flourishing, out to the very edges of the cosmos…

Yeah, I want that too. I’m a religiously minded atheist, after all.

In both disposition and beliefs, I’m far closer to Kurzweil than his many detractors. I think “degrowth” is an insane policy that if followed, would create scores of populist demagogues. I think that the Chinese room argument is good only for identifying people who don’t think systemically. I’m also more or less in agreement that government regulations won’t be able to stop a singularity (if one is going to occur because of continuing smooth acceleration in the price performance of information technology; regulation could catch up if a slowdown between paradigm shifts gives it enough time).

I think the singularity very well might happen. And at the end of the day, the only real difference between me and Kurzweil is that “might”.

Also: I repeat myself less.


Science Isn’t Your Cudgel

Do you want to understand how the material world works at the most fundamental level? Great! There’s a tool for that. Or a method. Or a collection of knowledge. “Science” is an amorphous concept, hard to pin down or put into a box. Is science the method of hypothesis generation and testing? Is it as Popper claimed, asking falsifiable questions and trying to refute your own theories? Is it inextricably entangled with the ream of statistical methods that have grown up in service of it? Or is it the body of knowledge that has emerged from the use of all of these intellectual tools?

I’m not sure what exactly science is. Whatever its definition, I feel like it helps me understand the world. Even still I have to remind myself that caring about science is like caring about a partner in a marriage. You need to be with it in good health and in bad, when it confirms things you’ve always wanted to believe, or when your favourite study fails to replicate or is retracted. It’s rank hypocrisy to shout the virtues of science when it confirms your beliefs and denigrate or ignore it when it doesn’t.

Unfortunately, it’s easy to collect examples of people who are selective about their support for science. Here’s three:

  1. Elizabeth May – and many other environmentalists – are really fond of the phrase “the science is clear” when talking about global warming or the dangers of pollution. In this they are entirely correct – the scientific consensus on global warming is incredibly clear. But when Elizabeth May says things like “Nuclear energy power generation has been proven to be harmful to the environment and hazardous to human health“, she isn’t speaking scientifically. Nuclear energy is one of the safest forms of power for both humans and the climate. Elizabeth May (and most of the environmental movement) are only fans of science when it fits with their fantasies of deindustrialization, not when it conflicts with them. See also the conflict between scientists on GMOs and environmentalists on GMOs.
  2. Hillary Clinton (who earned the support of most progressive Americans in the past election) is quite happy to applaud the March For Science and talk about how important science is, but she’s equally happy to peddle junk science (like the implicit association test) on the campaign trail.
  3. Unfortunately, this is a bipartisan phenomenon [1]. So called “race realists” belong on this list as well [2]. Race realists take research about racial variations in IQ (often done in America, with all of its gory history of repression along racial lines) and then claim that it maps directly onto observable racial characterises. Race realists ignore the fact that scientific attempts at racial clustering show strong continuity between populations and find that almost all genetic variance is individual, not between groups [3]. Race realists are fond of saying that people must accept the “unfortunate truth”, but are terrible at accepting that science is at least as unfortunate for their position as it is for blank slatism. The true scientific consensus lies somewhere in-between [4].

In all these cases, we see people who are enthusiastic defenders of “science” as long as the evidence suits the beliefs that they already hold. They are especially excited to use capital-S Science as a cudgel to bludgeon people who disagree with them and shallowly defend the validity of science out of concern for their cudgel. But actually caring about science requires an almost Kierkegaardian act of resignation. You have to give up on your biases, give up on what you want to be true, and accept the consensus of experts.

Caring about science enough to be unwilling to hold beliefs that aren’t supported by evidence is probably not for everyone. I’m not even sure I want it to be for everyone. Mike Alder says of a perfect empiricist:

It must also be said that, although one might much admire a genuine [empiricist] philosopher if such could found, it would be unwise to invite one to a dinner party. Unwilling to discuss anything unless he understood it to a depth that most people never attain on anything, he would be a notably poor conversationalist. We can safely say that he would have no opinions on religion or politics, and his views on sex would tend either to the very theoretical or to the decidedly empirical, thus more or less ruling out discussion on anything of general interest.

Science isn’t all there is. It would be much poorer world if it was. I love literature and video games, silly puns and recursive political jokes. I don’t try and make every statement I utter empirically correct. There’s a lot of value in having people haring off in weird directions or trying speculative modes of thought. And many questions cannot be answered though science.

But dammit, I have standards. This blog has codified epistemic statuses and I try and use them. I make public predictions and keep a record of how I do on them so that people can assess my accuracy as a predictor. I admit it when I’m wrong.

I don’t want to make it seem like you have to go that far to have a non-hypocritical respect for science.  Honestly, looking for a meta-analysis before posting something both factual and potentially controversial will get you 80% of the way there.

Science is more than a march and some funny Facebook memes. I’m glad to see so many people identifying so strongly with science. But for it to mean anything they have to be prepared to do the painful legwork of researching their views and admitting when they’re wrong. I have in the past hoped that loudly trumpeting support for science might be a gateway drug towards a deeper respect for science, but I don’t think I’ve seen any evidence for this. It’s my hope that over the next few years we’ll see more and more of the public facing science community take people to task for shallow support. If we make it low status to be a fair-weather friend of science, will we see more people actually putting in the work to properly support their views with empirical evidence?

This is an experiment I would like to try.


[1] The right, especially the religious right, is less likely to use “science” as a justification for anything, which is the main reason I don’t have complaints about them in this blog post. It is obviously terrible science to pretend that evolution didn’t happen or that global warming isn’t occurring, but it isn’t hypocritical if you don’t otherwise claim to be a fan of science. Crucially, this blog post is more about hypocrisy than bad science per se. ^

[2] My problems with race realists go beyond their questionable scientific claims. I also find them to be followers of a weird and twisted philosophy that equates intelligence with moral worth in a way I find repulsive. ^

[3] Taken together, these are damning for the idea that race can be easily inferred from skin colour. ^

[4] Yes, I know we aren’t supposed to trust Vox when it comes to scientific consensus. But Freddie de Boer backs it up and people I trust who have spent way more time than I have reading about IQ think that Freddie knows his stuff. ^

Biology, Politics

Medicine, the Inside View, and Historical Context

If you don’t live in Southern Ontario or don’t hang out in the skeptic blogosphere, you will probably have never heard the stories I’m going to tell today. There are two of, both about young Ontarian girls. One story has a happier ending than the other.

First is Makayla Sault. She died two years ago, from complications of acute lymphoblastic leukemia. She was 11. Had she completed a full course of chemotherapy, there is a 75% chance that she would be alive today.

She did not complete a full course of chemotherapy.

Instead, after 12-weeks of therapy, she and her parents decided to seek so-called “holistic” treatment at the Hippocrates Health Institute in Florida, as well as traditional indigenous treatments. . This decision killed her. With chemotherapy, she had a good chance of surviving. Without it…

There is no traditional wisdom that offers anything against cancer. There is no diet that can cure cancer. The Hippocrates Health Institute offers services like Vitamin C IV drips, InfraRed Oxygen, and Lymphatic Stimulation. None of these will stop cancer. Against cancer all we have are radiation, chemotherapy, and the surgeon’s knife. We have ingenuity, science, and the blinded trial.

Anyone who tells you otherwise is lying to you. If they are profiting from the treatments they offer, then they are profiting from death as surely as if they were selling tobacco or bombs.

Makayla’s parents were swindled. They paid $18,000 to the Hippocrates Health Institute for treatments that did nothing. There is no epithet I possess suitable to apply to someone who would scam the parents of a young girl with cancer (and by doing so, kill the young girl).

There was another girl (her name is under a publication ban; I only know her by her initials, J.J.) whose parents withdrew her from chemotherapy around the same time as Makayla. She too went to the Hippocrates Health Institute. But when she suffered a relapse of cancer, her parents appear to have fallen out with Hippocrates. They returned to Canada and sought chemotherapy alongside traditional Haudenosaunee medicine. This is the part of the story with a happy ending. The chemotherapy saved J.J.’s life.

When J.J. left chemotherapy, her doctors at McMaster Children’s Hospital [1] sued the Children’s Aid Society of Brant. They wanted the Children’s Aid Society to remove J.J. from her parents so that she could complete her course of treatment. I understand why J.J.’s doctors did this. They knew that without chemotherapy she would die. While merely telling the Children’s Aid Society this fact discharged their legal duty [2], it did not discharge their ethical duty. They sued because the Children’s Aid Society refused to act in what they saw as the best interest of a child; they sued because they found this unconscionable.

The judge denied their lawsuit. He ruled that indigenous Canadians have a charter right to receive traditional medical care if they wish it [3].

Makayla died because she left chemotherapy. J.J. could have died had she and her parents not reversed their decision. But I’m glad the judge didn’t order J.J. back into chemotherapy.

To explain why I’m glad, I first want to talk about the difference between the inside view and the outside view. The inside view is what you get when you search for evidence from your own circumstances and experiences and then apply that to estimate how you will fare on a problem you are facing. The outside view is when you dispassionately look at how people similar to you have fared dealing with similar problems and assume you will fare approximately the same.

Dr. Daniel Kahneman gives the example of a textbook he worked on. After completing two chapters in a year, the team extrapolated and decided it would take them two more years to finish. Daniel asked Seymour (another team member) how long it normally took to write a text book. Surprised, Seymour explained that it normally took seven to ten years all told and that approximately 40% of teams failed. This caused some dismay, but ultimately everyone (including Seymour) decided to preserver (probably believing that they’d be the exception). Eight years later, the textbook was finished. The outside view was dead on.

From the inside view, the doctors were entirely correct to try and demand that J.J. complete her treatment. They were fairly sure that her parents were making a lot of the medical decisions and they didn’t want J.J. to be doomed to die because her parents had fallen for a charlatan.

From an outside view, the doctors were treading on thin ice. If you look at past groups of doctors (or other authority figures), intervening with (they believe) all due benevolence to force health interventions on Indigenous Canadians, you see a chilling litany of abuses.

This puts us in a bind. Chemotherapy doesn’t cease to work because people in the past did terrible things. Just because we have an outside view that suggest dire consequences doesn’t mean science stops working. But our outside view really strongly suggests dire consequences. How could the standard medical treatment lead to worse outcomes?

Let’s brainstorm for a second:

  • J. could have died regardless of chemotherapy. Had there been a court order, this would have further shaken indigenous Canadian faith in the medical establishment.
  • A court order could have undermined the right of minors in Ontario to consent to their own medical care, with far reaching effects on trans youth or teenagers seeking abortions.
  • The Children’s Aid society could have botched the execution of the court order, leading to dramatic footage of a young screaming indigenous girl (with cancer!) being separated from her weeping family. Indigenous Canadians would have been reminded strongly of the Sixties Scoop.
  • There could have been a stand-off when Children’s Aid arrived to collect J.J.. Knowing Canada, this is the sort of thing that could have escalated into something truly ugly, with blockades and an armed standoff with the OPP or the military.

The outside view doesn’t suggest that chemotherapy won’t work. It simply suggests that any decision around forcing indigenous Canadians to receive health care they don’t want is ripe with opportunities for unintended consequences. J.J.’s doctors may have been acting out of a desire to save her life. But they were acting in a way that showed profound ignorance of Canada’s political context and past.

I think this is a weakness of the scientific and medical establishment. They get so caught up on what is true that they forget the context for the truth. We live in a country where we have access to many lifesaving medicines. We also live in a country where many of those medicines were tested on children that had been stolen from their parents and placed in residential schools – tested in ways that spit on the concept of informed consent.

When we are reminded of the crimes committed in the name of science and medicine, it is tempting to say “that wasn’t us; it was those who came before, we are innocent” – to skip to the end of the apologies and reparations and find ourselves forgiven. Tempting and so, so unfair to those who suffered (and still do suffer) because of the actions of some “beneficent” doctors and scientists. Instead of wishing to jump ahead, we should pause and reflect. What things have we done and advocated for that will bring shame on our fields in the future?

Yes, indigenous Canadians sometimes opt out of the formal medical system. So do white hippies. At least indigenous Canadians have a reason. If trips to the hospital occasionally for people that looked like me, I’d be a lot warier of them myself.

Scientists and doctors can’t always rely on the courts and on civil society to save us from ourselves. At some point, we have to start taking responsibility for our own actions. We might even have to stop sneering at post-modernism (something I’ve been guilty of in the past) long enough to take seriously its claim that we have to be careful about how knowledge is constructed.

In the end, the story of J.J., unlike that of Makayla, had a happy ending. Best of all, by ending the way it did, J.J.’s story should act as an example, for the medical system and indigenous Canadians both, on how to achieve good outcomes together.

In the story of Pandora’s Box, all of the pestilence and disease of the world sprung as demons from a cursed box and humanity was doomed to endure them ever more. Well we aren’t doomed forever; modern medicine has begun to put the demons back inside the box. It has accomplished this by following one deceptively simple rule: “do what works”. Now the challenge is to extend what works beyond just the treatments doctors choose. Increasingly important is how diseases are treated. When doctors respect their patients, respect their lived experiences, and respect the historical contexts that might cause patients to be fearful of treatments, they’ll have far more success doing what it is they do best: curing people.

It was an abrogation of duty to go to the courts instead of respectfully dealing with J.J.’s family. It was reckless and it could have put years of careful outreach by other doctors at risk. Sometimes there are things more important than one life. That’s why I’m glad the judge didn’t order J.J. back into chemo.


[1] I have a lot of fondness for McMaster, having had at least one surgery and many doctors’ appointments there. ^

[2] Doctors have a legal obligation to report any child abuse they see. Under subsection 37(2)e of the Child and Family Services Act (CFSA), this includes “the child requires medical treatment to cure, prevent or alleviate physical harm or suffering, and the child’s parent refuses to consent to treatment”. ^

[3] I’m not actually sure how relevant that is here – Brian Clement is no one’s idea of an expert in Indigenous medicine and it’s not clear that this ruling still sets any sort of precedent, given that the judge later amended his ruling to “make it clear that the interests of the child must be paramount” in cases like this. ^

Model, Physics, Science

Understanding Radiation via Antennas

It can be hard to grasp that radio waves, deadly radiation, and the light we can see are all the same thing. How can electromagnetic (EM) radiation – photons – sometimes penetrate walls and sometimes not? How can some forms of EM radiation be perfectly safe and others damage our DNA? How can radio waves travel so much further than gamma rays in air, but no further through concrete?

It all comes down to wavelength. But before we get into that, we should at least take a glance at what EM radiation really is.

Electromagnetic radiation takes the form of two orthogonal waves. In one direction, you have an oscillating magnetic field. In the other, an oscillating electric field. Both of these fields are orthogonal to the direction of travel.

These oscillations take a certain amount of time to complete, a time which is calculated by observing the peak value of one of the fields and then measuring how long it takes for the field to return to that value. Luckily, we only need to do this once, because the time an oscillation takes (called the period) will stay the same unless acted on by something external. You can invert the period to get the frequency – the number of times oscillations occur in a second. Frequency uses the unit Hertz, which are just inverted seconds. If something has the frequency 60Hz, it happens 60 times per seconds.

EM radiation has another nifty property: it always travels at the same speed, a speed commonly called “the speed of light” [1] (even when applied to EM radiation that isn’t light). When you know the speed of an oscillating wave and the amount of time it takes for the wave to oscillate, you can calculate the wavelength. Scientists like to do this because the wavelength gives us a lot of information about how radiation will interact with world. It is common practice to represent wavelength with the Greek letter Lambda (λ).

lambda class shuttle from star wars
Not that type of lambda. Image Credit: Marshal Banana on Flickr

Put in a more mathy way: if you have an event that occurs with frequency f to something travelling at velocity v, the event will have a spatial periodicity λ (our trusty wavelength) equal to v / f. For example, if you have a sound that oscillates 34Hz (this frequency is equivalent to the lowest C♯ on a standard piano) travelling at 340m/s (the speed of sound in air), it will have a wavelength of (340 m/s)/(34 s-1) = 10m. I’m using sound here so we can use reasonably sized numbers, but the results are equally applicable to light or other forms of EM radiation.

Wavelength and frequency are inversely related to each other. The higher the frequency of something, the smaller its wavelength. The longer the wavelength, the lower the frequency. I’m used to people describing EM radiation in terms of frequency when they’re talking about energy (the quicker something is vibrating, the more energy it has) and wavelength when talking about what it will interact with (the subject of the rest of this post).

With all that background out of the way, we can actually “look” at electromagnetic radiation and understand what we’re seeing.

animated gif showing oscillating magnetic and electric fields orthogonal to direction of travel
Here wavelength is labeled with “λ”, the electric field is red and labelled with “E” and the magnetic field is blue and labelled with “B”. “B” is the standard symbol for magnetic fields, for reasons I have never understood. Image Credit: Lookang on Wikimedia Commons.

Wavelength is very important. You know those big TV antennas houses used to have?

picture of house with old fashioned aerial antenna
Image Credit: B137 on Wikimedia Commons

Turns out that they’re about the same size as the wavelength of television signals. The antenna on a car? About the same size as the radio waves it picks up. Those big radio telescopes in the desert? Same size as the extrasolar radio waves they hope to pick up.

image of the VLA radio telescopes
Fun fact: these dishes together make up a very large radio telescope, unimaginatively called the “Very Large Array”. Image Credit: Hajor on Wikimedia Commons

Even things we don’t normally think of as antennas can act like them. The rod and cone cells in your eyes act as antennas for the light of this very blog post [2]. Chains of protein or water molecules act as antennas for microwave radiation, often with delicious results. The bases in your DNA act as antennas for UV light, often with disastrous results.

These are just a few examples, not an exhaustive list. For something to be able to interact with EM radiation, you just need an appropriately sized system of electrons (or electrical system; the two terms imply each other). You get this system of electrons more or less for free with metal. In a metal, all of the electrons are delocalized, making the whole length of a metal object one big electrical system. This is why the antennas in our phones or on our houses are made of metal. It isn’t just metal that can have this property though. Organic substances can have appropriately sized systems of delocalized electrons via double bonding [3].

EM radiation can’t really interact with things that aren’t the same size as its wavelength. Interaction with EM radiation takes the form of the electric or magnetic field of a photon altering the electric or magnetic field of the substance being interacted with. This happens much more readily when the fields are approximately similar sizes. When fields are the same size, you get an opportunity for resonance, which dramatically decreases the loss in the interaction. Losses for dissimilar sized electric fields are so high that you can assume (as a first approximation) that they don’t really interact.

In practical terms, this means that a long metal rod might heat up if exposed to a lot of radio waves (wavelengths for radio waves vary from 1mm to 100km; many are a few metres long due to the ease of making antennas in that size) because it has a single electrical system that is the right size to absorb energy from the radio waves. A similarly sized person will not heat up, because there is no single part of them that is a unified electrical system the same size as the radio waves.

Microwaves (wavelengths appropriately micron-sized) might heat up your food, but they won’t damage your DNA (nanometres in width). They’re much larger than individual DNA molecules. Microwaves are no more capable of interacting with your DNA than a giant would be of picking up a single grain of rice. Microwaves can hurt cells or tissues, but they’re incapable of hurting your DNA and leaving the rest of the cell intact. They’re just too big. Because of this, there is no cancer risk from microwave exposure (whatever paranoid hippies might say).

Gamma rays do present a cancer risk. They have a wavelength (about 10 picometres) that is similar in size to electrons. This means that they can be absorbed by the electrons in your DNA, which kick these electrons out of their homes, leading to chemical reactions that change your DNA and can ultimately lead to cancer.

Wavelength explains how gamma rays can penetrate concrete (they’re actually so small that they miss most of the mass of concrete and only occasionally hit electrons and stop) and how radio waves penetrate concrete (they’re so large that you need a large amount of concrete before they’re able to interact with it and be stopped [4]). Gamma rays are stopped by the air because air contains electrons (albeit sparsely) that they can hit and be stopped by. Radio waves are much too large for this to be a possibility.

When you’re worried about a certain type of EM radiation causing cancer, all you have to do is look at its wavelength. Any wavelength smaller than that of ultraviolet light (about 400nm) is small enough to interact with DNA in a meaningful way. Anything large is unable to really interact with DNA and is therefore safe.

Epistemic Status: Model. Looking at everything as antenna will help you understand why EM radiation interacts with the physical world the way it does, but there is a lot of hidden complexity here. For example, eyes are far from directly analogous to antennas in their mechanism of action, even if they are sized appropriately to be antennas for light. It’s also true that at the extreme ends of photon energy, interactions are based more on energy than on size. I’ve omitted this in order to write something that isn’t entirely caveats, but be aware that it occurs.


[1] You may have heard that the speed of light changes in different substances. Tables will tell you that the speed of light in water is only about ¾ of the speed of light in air or vacuum and that the speed of light in glass is even slower still. This isn’t technically true. The speed of light is (as far as we know) cosmically invariant – light travels the same speed everywhere in the galaxy. That said, the amount of time light takes to travel between two points can vary based on how many collisions and redirections it is likely to get into between two points. It’s the difference between how long it takes for a pinball to make its way across a pinball table when it hits nothing and how long it takes when it hits every single bumper and obstacle. ^

[2] This is a first approximation of what is going on. Eyes can be modelled as antennas for the right wavelength of EM radiation, but this ignores a whole lot of chemistry and biophysics. ^

[3] The smaller the wavelength, the easier it is to find an appropriately sized system of electrons. When your wavelength is the size of a double bond (0.133nm), you’ll be able to interact with anything that has a double bond. Even smaller wavelengths have even more options for interactions – a wavelength that is well sized for an electron will interact with anything that has an electron (approximately everything). ^

[4] This interaction is actually governed by quantum mechanical tunneling. Whenever a form of EM radiation “tries” to cross a barrier larger than its wavelength, it will be attenuated by the barrier. The equation that describes the probability distribution of a particle (the photons that make up EM radiation are both waves and particles, so we can use particle equations for them) is approximately  (I say approximately because I’ve simplified all the constants into a single term, k), which becomes  (here I’m using k1 to imply that the constant will be different), the equation for exponential decay, when the energy (to a first approximation, length) of the substance is higher than the energy (read size of wavelength) of the light.

This equation shows that there can be some probability – occasionally even a high probability – of the particle existing on the other side of a barrier.  All you need for a particle to traverse a barrier is an appropriately small barrier. ^

Falsifiable, Literature, Model, Science

Pump Six and the Perils of Speculative Fiction

I just finished Pump Six, a collection of short stories by Paolo Bacigalupi. A few weeks prior to this, I read Ted Chiang’s short story collection, Stories of Your Life and Others and I couldn’t help but be struck by the contrast between them. Ted Chiang writes stories about different ways the world could work. Paolo Bacigalupi writes stories about different ways the future could happen.

These are two very different sorts of speculation. The first requires extreme attention to detail in order to make the setting plausible, but once you clear that bar, you can get away with anything. Ted Chiang is clearly a master at this. I couldn’t find any inconsistencies to pick at in any of his stories.

When you try to predict the future – especially the near future – you don’t need to make up a world out of whole cloth. Here it’s best to start with plausible near future events and let those give your timeline a momentum, carrying you to where you want to go on a chain of reason. No link has to be perfect, but each link has to be plausible. If any of them leave your readers scratching their heads, then you’ve lost them.

Predicting the future is also vulnerable to the future happening. Predictions are rooted in their age and tend to tell us more about the context in which they were made than about the future.

I think Pump Six is a book where we can clearly see and examine both of these problems.

First, let’s talk about chains of events. The stories The Fluted Girl, The Calorie Man, The Tamarisk Hunter, and Yellow Card Man all hinge on events that probably seem plausible to Bacigalupi, but that feel deeply implausible to me.

The Fluted Girl imagines the revival of feudalism in America. Fiefs govern the inland mountains, while there is a democracy (presumably capitalist) on the coasts. This arrangement felt unstable and unrealistic to me.

Feudal societies tend to have much less economic growth than democracies (see part 2 of Scott’s anti-reactionary FAQ). Democracies also aren’t exactly great at staying calm about atrocities right on their doorsteps. These two facts combined make me wonder why the (Coloradan?) feudal society in The Fluted Girl hasn’t been smashed by its economically (and therefore, inevitably militarily) more powerful neighbours.

In The Tamarisk Hunter, the Colorado River is slowly being covered by a giant concrete straw, a project that has been going on for a while and requires massive amounts of resources. The goal is to protect the now diminished Colorado River from evaporation as it winds its way into a deeply drought-stricken California.

In the face of a bad enough drought, every bit counts. But there are much more cost effective ways to get your drinking water. The Colorado river today has an average discharge of 640m3/s. In a bad drought, this would be lower. Let’s say it’s at something like 200m3/s.

You could get that amount of water from building about 100 desalination plants, which would cost something like $100 billion today (using a recently built plant in California as a baseline). Bridges cost something like $3,000 per m2 (using this admittedly flawed report for guidance), so using bridges to estimate the cost, the “straw” would cost about $300 million per kilometer (using the average width of the Colorado river). Given the relative costs of the two options, it is cheaper to replace the whole river (assuming reduced flow from the drought) with desalination plants than it is to build even 330km (<200 miles) of straw.

A realistic response to a decades long California drought would involve paying farmers not to use water, initiating water conservation measures, and building desalination plants. It wouldn’t look like violent conflict over water rights up and down the whole Colorado River.

In The Calorie Man and Yellow Card Man, bioengineered plagues have ravaged the world and oil production has declined to the point where the main source of energy is once again the sun (via agriculture). Even assuming peak oil will happen (more on that in a minute), there will always be nuclear power. Nuclear power plants currently provide for only ten percent of the world’s energy needs, but there’s absolutely no good reason they couldn’t meet basically all of them (especially if combined with solar, hydro, wind, and if necessary, coal).

With improved uranium enrichment techniques and better energy storage technology, it’s plausible that sustainable energy sources could, if necessary, entirely displace oil, even in the transportation industry.

The only way to get from “we’re out of oil” to “I guess it’s back to agriculture as our main source of energy” is if you forget about (or don’t even consider) nuclear power.

This is why I think the stories in Pump Six tell me a lot more about Bacigalupi than about the future. I can tell that he cares deeply about the planet, is skeptical of modern capitalism, and fearful of the damage industrialization, fossil fuels, and global warming may yet bring.

But the story that drove home his message for me wasn’t any of the “ecotastrophes”, where humans are brought to the brink of destruction by our mistreatment of the planet. It was The People of Sand and Slag that made me stop and wonder. It asks us to consider what we’d lose if we poison the planet while adapting to the damage. Is it okay if beaches are left littered with oil and barbed wire if these no longer pose us any threat?

I wish more of the stories had been like that, instead of infected with the myopia that causes environmentalists to forget about the existence of nuclear power (when they aren’t attacking it) and critics of capitalism to assume that corporations will always do the evil thing, with no regard to the economics of the situation.

Disregard for economics and a changing world intersect when Bacigalupi talks about peak oil. Peak oil was in vogue among environmentalists in the 2000s as oil prices rose and rose, but it was never taken seriously by the oil industry. As per Wikipedia, peak oil (as talked about by environmentalists in the ’00s, not as originally formulated) ignored the effects of price on supply and demand, especially in regard to unconventional oil, like the bitumen in the Albertan Oil Sands.

Price is really important when it comes to supply. Allow me to quote from one of my favourite economics stories. It’s about a pair of Texan brothers who (maybe) tried to corner the global market for silver and in the process made silver so unaffordable that Tiffany’s ran an advertisement denouncing them in the third page of the New York Times. The problems the Texans ran into as silver prices rose are relevant here:

But as the high prices persisted, new silver began to come out of the woodwork.

“In the U.S., people rifled their dresser drawers and sofa cushions to find dimes and quarters with silver content and had them melted down,” says Pirrong, from the University of Houston. “Silver is a classic part of a bride’s trousseau in India, and when prices got high, women sold silver out of their trousseaus.”

Unfortunately for the Hunts, all this new supply had a predictable effect. Rather than close out their contracts, short sellers suddenly found it was easier to get their hands on new supplies of silver and deliver.

“The main factor that has caused corners to fail [throughout history] is that the manipulator has underestimated how much will be delivered to him if he succeeds [at] raising the price to artificial levels”

By the same token, many people underestimated the amount of oil that would come out of the woodwork if oil prices remained high – arguably artificially high, no thanks to OPEC – for a prolonged period. As an aside, it’s also likely that we underestimate the amount of unconventional water that could be found if prices ever seriously spiked, another argument against the world in The Tamarisk Hunter.

This isn’t to say that there won’t be a peak in oil production. The very real danger posed by global warming and the fruits of investments in alternative energy when oil prices were high will slowly wean us off of oil. This formulation of peak oil is much different than the other one. A steady decrease in demand for oil  will be hard on oil producing regions, but it won’t come as a sharp shock to the whole world economic order.

I don’t know how much of this could have been known in 2005, especially to anyone deeply embedded in the environmentalist movement. As an exoneration, that’s wonderful. But this is exactly my point from above. You can try and predict the future, but you can only predict from your flawed vantage point. In retrospect, it is often easier to triangulate the vantage point than to see the imagined future as plausible.

Another example: almost all science fiction before the late 00s drastically underestimated the current prevalence in mobile devices. In series that straddle the divide, you often see mobile devices mentioned much more in the latter books, as authors adjust their visions of the future to take into account what they now know in the present.

Writing is hard and the critic will always have an easier time than the author. I don’t mean to be so hard on Bacigalupi, I really did enjoy Pump Six and it’s caused me to do no end of thinking and discussing since I finished reading it. In this regard, it was an immensely successful book.

Epistemic Status: The math is Falsifiable, the rest is a Model.

Politics, Science

Special Topics in Nuclear Weapons: Laser Enrichment

In an effort to make my nuclear weapons post series a one stop resource for anyone interested in getting up to speed on nuclear weapons, I’ve decided to add supplementary materials filling any gaps that are pointed out to me. This supplementary post is on laser enrichment.

Enrichment is one of the more difficult steps in the building of certain nuclear weapons. Currently, enrichment is accomplished through banks of hundreds or thousands of centrifuges, feeding their products forward towards higher and higher enrichment percentages.

Significant centrifuge plants are relatively big (the Natanz plant in Iran covers 100,000m2, for example) and require a large and consistent supply of energy, which often makes it possible spot them in satellite imagery. The centrifuges themselves require a recognizable combination of components, which are carefully monitored. If a nation were to suddenly buy up components implicated in centrifuge design, it would clearly signal its intention to increase its enrichment capacity.

Recently, laser enrichment has emerged as an additional vector for proliferation. Properly called SILEX (separation of isotopes by laser excitation), this new technology has the potential to make enrichment (and therefore proliferation easier). This post discusses how laser enrichment works and puts the threat it represents in context. It’s both a summarization (and simplification) of the recent paper on laser enrichment in published in Science & Global Security by Ryan Snyder and the product of my extensive background reading on nuclear weapons.

How It Works

Like gas centrifugation, laser enrichment requires gaseous uranium hexafluoride (Hex). While the preparation of uranium hexafluoride doesn’t represent a significant technical challenge (compared to all of the rest of the work of building a nuclear weapon), it’s still the sort of work that most reasonable chemists try to avoid. “Requires work with a poisonous, corrosive, radioactive gas” will never be a selling feature of enrichment work.

Laser enrichment also requires a large laser capable of outputting 10.2µm light (which must be converted to 16µm using Raman scattering off of H2 gas), capable of pulsing 30,000 times per second. This appears to be just barely possible with current technology and impossible with off the shelf technology. It’s the sort of thing that would have to be custom assembled.

Also requiring custom assembly is the enrichment cell, which must have a nozzle capable of injecting a supersonic stream of uranium hexafluoride in such a way as to minimize post-injection expansion. The cell also must have an optically transparent window for your laser to shine through and must have several egress lines – peripheral ones for enriched product and a central one for the jet to flow out of.

Finally, if you want to make this maximally efficient, you’re going to need a mirror set up so as to have your laser pass through the gas twice. This corrects for the circular shape of the laser. Without this mirror, you won’t have enough coverage at that edges of the gas and you’re only going to operate at 78.5% of the maximum efficiency.

The whole setup looks like this:

Image Credit: A Proliferation Assessment of Third Generation Laser
Uranium Enrichment Technology

Once you’ve assembled all of this, you’re good to start enriching.

Remember, natural Hex is largely made up of 238UF6 and is only about 0.7% 235UF6. The purpose of enrichment is to increase the percentage of 235UF6 in the gas until it is almost entirely made up of this isotope of uranium.

The process SILEX uses to achieve this is relatively simple. You run the Hex and a carrier gas (the paper says SF6) through this system at supersonic speeds and low temperatures while pulsing the laser so as to hit the jet just as it leaves the nozzle. If you’ve tuned your wavelength as directed, then photons from the laser will kick any 235UF6 molecules they hit into a heightened vibrational state (called the v3 vibrational mode), while doing nothing to the 238UF6 molecules that make up most of the Hex.

235UF6 in the v3 vibrational mode will eventually revert to a lower energy (or “ground”) state, but it is unlikely to spontaneously revert to a ground state during the few milliseconds it takes to traverse the cell. For the purposes of SILEX, 235UF6 in the v3 vibrational mode will remain in that mode unless something acts on it to change it. To improperly anthropomorphize a particle for a second, this is “bad” for the excited 235UF6, because it “wants” to be at a lower ground state.

The excited 235UF6 could get external “help” from a collision with 238UF6 (this collision would allow it to release a photon and revert to its ground state), but this is unlikely if you keep the overall concentration of UF6 in the carrier gas low (the paper recommends 5%). This is in fact exactly what is done, because efficiency is maximized when 238UF6 doesn’t get a chance to collide with 235UF6.

When you put Hex in a carrier gas like SF6, you’re going to see the formation of transitory dimers. These are temporary, weak bonds between one Hex molecule and one SF6 molecule. These bonds are fairly stable, unless the Hex is in the v3 (or similar) vibrational mode. If dimer formation occurs between v3 235UF6 and SF6, the dimer is very short-lived. The excited 235UF6 dumps all of its extra energy into the dimer bond, resulting in a lot of recoil; both the 235UF6 and the SF6 go flying apart in opposite directions. It’s the dimer formation that causes a very different outcome from a simple collision with 238UF6.

This recoil tends to push 235UF6 to the edges of the stream. A skimmer positioned around the outlet collects this enriched product. Note that it won’t be entirely enriched; the outside edges of the jet will have plenty of 238UF6 because the jet is going to be mostly 238UF6 – or at least, it will be when natural or lightly enriched uranium is the input.

If you were doing this on an industrial scale, you’d set a bunch of these cells up in series, with the enriched product of each cell being the feed for the next. In this way, you’d get the same sort of cascade towards higher enrichment as you would with centrifuges.


Laser enrichment might be more space and energy efficient than centrifuge arrays.

I have to say might because there’s some uncertainty here. A few key parameters that determine ease of proliferation using SILEX are missing. This isn’t because of censors removing them for security reasons. It’s because this technology is so new that there are serious question marks hanging over it. SILEX has shown promise in lab scale experiments, but there doesn’t yet exist any proof that SILEX will be superior to centrifuge enrichment when it comes to enriching uranium on an industrial scale. Given that the pilot project has been stalled since GE pulled out, it may be quite a while before we know if SELIX will fulfill its promise or not.

It looks like a SILEX would allow a country with technology on the level of Iran to enrich the same amount of uranium with only 59% of the floor area. This would make enrichment a bit easier to hide, but would do nothing to stop leaks. It was human intelligence, not satellite photos that allowed the west to discover the work at Natanz.

The error bound on SILEX energy consumption is large enough that it’s unclear if there would be a power consumption benefit or cost for rogue states switching to SILEX from indigenous centrifuge technology. State of the art American centrifuges still beat SILEX on floor space and they may beat it in energy use.

Estimates for SILEX efficiency span an order of magnitude and in the upper two-thirds of that range it seems to be a clear winner (in terms of amount of energy required per percent enrichment). I couldn’t see any consensus on the relatively likelihood of high vs. low actual efficiency, but I would personally bet that a lot of the probability distribution exists near the bottom of the allowed efficiencies. I haven’t worked in nuclear science, but I have done chemistry, and my experience is that few processes perform as well on an industrial scale as you might expect from efficiency calculations done at laboratory scale.

Enrichment with SILEX is quite possibly easier than enrichment with centrifuges. That is to say, even if SILEX doesn’t allow rogue nations to enrich more efficiently, it might allow them to enrich at all. SILEX requires some advanced optics knowledge and the lasers needed aren’t exactly available off the shelf, but they are easier to design and build than specialized enrichment centrifuges.

Before centrifugation became the preferred method of isotope separation for nuclear weapons (and nuclear energy), gaseous diffusion was used. Gaseous diffusion plants use truly prodigious amounts of space and energy. There is absolutely no way that these things can be hidden or disguised as something else.

With the advent of centrifuges, proliferation became significantly easier. Countries used to be faced with no good path to a functioning bomb. Plutonium is relatively easy to acquire and separate, but it is very difficult to build a successful implosion weapon (and impossible to do so without alerting anyone with test detonations). Uranium was relatively difficult to enrich, which closed off the option of a simpler gun assembly weapon (it is impossible to build a gun assembly weapon using plutonium).

If you want a nuclear arsenal and don’t care that gun assembly weapons are wasteful and less useful for staging, then the advent of uranium enrichment via centrifugation was a boon to you. Gun assembly weapons don’t even necessarily require test detonations, which allows for the (slim) possibility of entirely clandestine nuclear arsenals – assuming enough uranium can be secretly enriched.

SILEX may eventually exacerbate this problem, to the point where any country with access to uranium could conceivably build a relatively low yield bomb (say a dozen or two kilotons).

At present, the technology is too new for this to be true. SILEX almost certainly has a few kinks left to be worked out. Trying to work them out at the same time as your country builds a new nuclear program isn’t ideal. Best to wait for India or Pakistan to figure them out and then leak them to you in exchange for favours or missile technology (this has been North Korea’s approach to nuclear weapons and it has worked quite well).

In a decade, SILEX may make proliferation even easier. I don’t think it will make it easy to the point where Al Qaeda or Daesh can attempt to build nuclear weapons (can you imagine Daesh setting up a high-energy laser laboratory in Raqqa?). But I do worry that countries like Saudi Arabia or the Philippines might see the calculus around proliferation change enough to justify their building of a small arsenal of uranium weapons.

That would be a disaster for world peace and stability.

Governments are already reacting to threat posed by SILEX by adding necessary components to export ban and international watch lists. If any nation buys up a bunch of laser components over a short time without a good explanation, the international community will now suspect enrichment. I’m sure there are many men and women in the basement of the Pentagon and CIA headquarters now watching all laser equipment sales for more subtle signals of gradual stockpiling. Don’t think for a second that SILEX somehow represents a cheat code for proliferation. It’s still untested and unproven and governments and international organizations are already taking steps to reduce the proliferation risk.

Most nuclear technology is dual use. Uranium enrichment by centrifugation has made proliferation easier. It also increased the energy return on investment from burning uranium in power plants from ~40x to over 1500x (see here if you want to double check my calculations). Because of centrifugation, nuclear power plants could permanently end our dependence on oil if coupled with new battery technologies (and upfront capital and political will to build them).

SILEX could further increase the energy return on investment, making nuclear power plants even more economical. But SILEX also has the potential to make proliferation easier. It’s still a new, experimental technology and it might not even pan out. Until we know for sure, it is certainly best for the world to proceed with caution.

main topic index
Falsifiable, Politics, Science

Nuclear Weapons: 8.0 High Value Anti-Nuclear Activism

Nuclear weapons represent an existential risk. I’ll let 80,000 Hours speak for me for a minute:

A survey of academics at the Global Catastrophic Risk Conference by Oxford University estimated a 1% chance of human extinction from nuclear wars over the 21st Century.

Luke Oman estimates the probability “for the global human population of zero resulting from the 150 Tg of black carbon scenario in our 2007 paper [delving into the effects of a single nuclear exchange] would be in the range of 1 in 10,000 to 1 in 100,000.” This being said, we think this estimate is too low, as it doesn’t account for the potential for weaknesses in their model or the risk of a societal collapse causing a permanent reduction in humanity’s ability to reach its potential (which is nonetheless an existential risk even if people remain).

If you’re interested in reducing the existential risk that nuclear weapons pose, I’ve identified a few areas where you may be able to make a difference.

8.1 Tactical Weapons

Countries have begun to reduce stockpiles of tactical weapons and put those that remain under better centralized control. No one ever wanted a fresh lieutenant in charge of the nuclear weapon that could eventually set off World War III – it just took everyone a while to realize this.

Still, it seems like this has primarily been possible because of the collapse of the Soviet Union. When the USSR seemed poised to overrun Europe, killing the commies was given priority over keeping humanity alive. Increasing regional tensions between Russia and NATO may result in a resurgence of tactical weapons.

Treaties that ban weapons under a certain yield, or require all nuclear warheads to have locks that can only be released by the civilian leadership of a country would be an excellent way to reduce the risk of conventional warfare leading to a nuclear exchange.

8.2 Arms Reduction Treaties

Not all arms reduction treaties are created equal. The Strategic Offensive Reductions Treaty (SORT) expired on the same day it came into full effect and set non-specific limits; while it may have reduced the total number of nuclear weapons deployed, it probably did this by causing the early retirement of already obsolescent systems. In addition, SORT had no verification provisions. We literally have no way of knowing if it actually had an effect.

On the other hand, the New Strategic Arms Reduction Treaty (New START) has a robust verification mechanism, including demonstrations that technology has been fully decommissioned and eighteen inspector visits each year. New START sets specific limits on ICBMs, SLBMs, nuclear armed bombers, and total deployed warheads. It will be in full force for at least three years, but might be extended longer. It comes up for review in 2019, so convincing the US and Russia to renew it will be very important.

8.3 Anti-ballistic missiles

The US ABM system represents a real threat to global peace. If it is demonstrated to be effective, we could see China rapidly increase its nuclear arsenal. If it’s expanded to the East Coast of the US, or Europe, we could see Russia do the same.

If you live in America, pressuring your congressional representative or senator to vote against any measures increasing funding for the ABM system could be very important. You can call it a waste of taxpayer money, demand it not be built in your backyard, etc.

If you live near one of the current ABM sites, or are near one of the sites for potential expansion, you can engage in direct action.

In addition to organizing protests (it should be easy to get people uneasy about nuclear weapons near them), you can attempt to bog down any expansion or new construction in and endless morass of red tape. If a system is being built near you, you should attend any community meeting you can, be as obstinate as possible, and jump on any zoning violation, rushed environmental assessment, or other bureaucratic mistake like a rabid pit bull. This won’t be very effective if new ABM sites are built entirely within existing military bases, but if even a single support strut has to go up for municipal approval, there’s potential to make an impact.

Current ABM sites are Fort Greely in Alaska and Vandenberg Air Force Base, California. Proposed eastern sites are SERE Remote Training Site in Maine, Fort Drum in New York, Camp Ravenna Joint Military Training Center in Ohio, and Fort Custer Training Center in Michigan.

8.4 Donations

Both 80,000 Hours and OpenPhil have done their own preliminary assessment of nuclear weapon risk.

Neither piece offers firm suggestions for the most effective charity and I lack the expertise to do my own evaluation. Both OpenPhil and 80,000 Hours suggest that there may not be much room for more funding, although OpenPhil suggests that effective anti-nuclear advocacy may be underfunded.

For what it’s worth, I’m donating to the Ploughshares Fund. They seem to have the correct focuses, from preserving the Iran deal, to removing tactical weapons from Europe, to opposing new ABM systems. I don’t think they have that much more room for funding, so I’d welcome a more thorough effectiveness evaluation that would allow people concerned with nuclear risk to confidently donate their money.

< previous ^ index special topics >
Falsifiable, Politics, Science

Nuclear Weapons: 7.0 Strategy

Having covered the practicalities of nuclear physics, nuclear weapon design, and nuclear weapon effects, we may now turn our attention to the strategies that have grown out of these physical realities.

7.1 Tactical and Strategic Weapons

Broadly speaking, there are two kinds of nuclear weapons – tactical and strategic. This post has been focused primarily on strategic nuclear weapons, high yield weapons capable of destroying cities and hardened targets. Tactical nuclear weapons have smaller yields, allowing them to be hypothetically used on a battlefield that contains friendlies.

The line between the two gets somewhat blurred with the highest yield tactical weapons. Is a 5kt bomb tactical or strategic? No one really has a clear answer. These already crystal clear waters get muddied further when you add in “dial-a-yield” weapons, which can yield anywhere from <1kt to ~100kt. On the low end, they’re definitely tactical. But at the high end, they’re clearly strategic.

Most of the treaties that deal with nuclear weapons don’t cover tactical weapons. This is a bit of a problem, because tactical weapons are perhaps the easiest way that a conventional conflict could escalate into a nuclear conflict. It goes like this: my army is losing, so I have a fire-team use a tactical nuke launched from a recoilless rifle on your densest concertation of tanks. The 100t weapon totally destroys the formation, swinging the battle in my favour.

The nuke I used on you, the opposing general, is not a strategic weapon, so I don’t need codes from higher up or another person to agree with my decision.

You are now losing because those tanks occupied a key position. You reply with a 1kt tactical nuke of your own, fired from an 8″ howitzer 20km behind your own lines. It takes out 3,000 of my infantry. Satisfied, you go back to conventional war.

But I’m pissed off, so I dial up one of my short ranged tactical missiles to a 10kt yield. There’s a plume of smoke from the rocket launch, a bright flash, and a crater where your army used to be. I’m satisfied with a job well done, but your side is pretty enraged. So they call in a 50kt strategic nuke on an intermediate range ballistic missile that wipes out my forces and camp.

A few more levels of escalation and the ICBMs and SLBMs begin to fly. Once you believe nuclear war is inevitable, the only thing to do is try for a successful first strike and pray for the best.

7.2 First Strike, Second Strike, Counterforce, Countervalue

A first strike is an attempt to destroy an opponent’s nuclear arsenal before they can launch it at you. SLBMs or on station stealth bombers are the only real way to pull this off. The flight time for ICBMs between probable belligerents is much too long for the missiles to reach targets before those targets have a chance to respond.

Targets include airbases where nuclear bombers are known to be based, the known location of any mobile ICBMs, missile silos, docks where nuclear submarines may be resupplying, command and control systems, and key nuclear weapons decision makers. Separately, any nuclear submarines that have be detected will be attacked by the hunter-killer submarines shadowing them.

In all likely nuclear exchanges between larger nuclear powers (NATO/Russia, NATO/China, China/Russia, China/Pakistan, China/India, India/Pakistan, Pakistan/Israel and neglecting North Korea due to the primitive nature of its nuclear program), this won’t be enough. Some of the nuclear weapons will survive.

Baring a truly unlikely display of self-sacrifice and forgiveness, these remaining weapons will immediately be fired at the aggressor in a second strike – a retaliatory attack.

First strikes are predicted to be mostly counterforce, that is to say, aimed at an enemy’s military forces in general and their nuclear forces in particular. There will be civilian casualties, because there always are, especially with weapons as indiscriminate as nukes, but civilian casualties aren’t the goal of a first strike.

A second strike, on the other hand, would be primarily countervalue, that is to say, aimed at the most valuable targets an enemy possesses. Major cities, knowledge centres, and industrial centres are the primary targets in a countervalue strike. Civilian casualties are kind of the point and consequently will be rather high.

7.3 Mutually Assured Destruction

Nuclear policy has for decades been based on the idea of mutually assured destruction (MAD). Mutually assured destruction requires all nuclear armed powers to be committed to a massive countervalue retaliatory strike against any country which deploys nuclear weapons against them. Furthermore, this threat must be credible – enemy decision makers must believe it is real and can be carried out if necessary.

The goal of the mutually assured destruction doctrine is to prevent nuclear war by making it clear that all nuclear wars will be unwinnable, so that no power believes they can gain anything from them. Wargame succinctly summed up the desired end-state of the MAD doctrine with the famous line “the only winning move is not to play”.

For MAD to ensure stability, two things must be true:

  1. No actor can destroy the entire nuclear arsenal of another in a first strike.
  2. No actor can defend against a second strike well enough that they will escape unscathed.

While the current MAD equilibrium is relatively stable, it has come under threat from both the US and the USSR in the past. The closest we’ve come to nuclear self-annihilation has been those times when MAD had begun to break down.

The Cuban Missile Crisis was ultimately about first strike capability. The US had based ballistic missiles in Italy and Turkey that gave it the easy ability to target the USSR – and Soviet missiles (of which there were only 20 that could hit the continental United States from Soviet territory). With these forward deployed missiles and timely reconnaissance from the U2 spy plane, it had become perhaps possible for the US to wipe out the Soviet Union and face minimal retaliation.

When the Soviets began to build missile sites in Cuba, the problem became mutual. Suddenly each side had first strike capability. If you want to look for the hand of God in human affairs, I would suggest centring your search here. Conditions were riper for a first shot than a Mos Eisley cantina. It’s a genuine miracle that no one launched missiles.

The negotiated resolution to the Cuban Missile Crisis was publically all about Cuba. Kennedy promised to never invade again and Khrushchev promised to remove the missiles. But in secret, Kennedy promised to remove all of the US missiles based in Italy and Turkey. First strike capability was removed and equilibrium restored.

The second threat to MAD came from anti-ballistic missiles (ABMs). By the 1960s, both the US and USSR were working on ABM systems. The Soviets were building a network of ABMs around their capital Moscow, while the Americans were building a similar system around their missile silos in North Dakota.

These systems were imperfect and could be overwhelmed by MIRVs. But both sides were worried about the future; what if their enemy figured out perfect missile defense before they did? Both the US and USSR knew that If one side could gain a critical advantage in missile defense, they would be able to launch a first strike with impunity. The bitter irony was that systems designed to protect against nuclear attacks were making global nuclear war more likely.

This crisis was also defused through diplomacy. Both sides understood the risks and decided they weren’t worth it. The first Strategic Arms Limitation Treaty (SALT I) limited both the USSR and US to two ABM sites. Hot on the heels of this was the Anti-Ballistic Missile Treaty which revised the limit downwards to one site and limited the number of ABMs at each site to 100.

Unfortunately, the US unilaterally withdrew from this treaty in 2002 to begin work on a new missile defense system. If this system ever becomes operational to the point that the US can expect to survive a second strike from Russia or China, nuclear war will become imminent.

7.4 The Nuclear Triad

The delicate balance of MAD is maintained by the nuclear triad: ICBMs, SLMBs, and conventional bombers. Once a nation possesses all three legs of the triad it becomes almost impossible to remove their nuclear capability in a first strike.

Each leg of the triad has a purpose. ICBMs are static, but are relatively cheap and can often be launched quickly. SLBMs are more expensive and slightly harder to launch (they require accurate positioning for targeting) but are very hard to destroy. And conventional bombers have the greatest flexibility in avoiding attack, plus a very long range courtesy of in-air refueling.

These aren’t the only three methods that can round out a triad though. Really, the important thing is having three credible and disparate systems, such that it is impossible to remove your ability to make a countervalue second strike. Space based weapons (forbidden by treaties), air launched missiles, carrier based nuclear bombers, or nuclear torpedoes could all be used in place of one of the “standard” legs of the triad.

Only India, China, the United States, and Russia have confirmed nuclear triad capability. Israel is suspected of having a nuclear triad, but refuses to confirm or deny this assertion (Israel does wink suggestively when asked, which has led basically all experts to assume that they do in fact possess a nuclear triad).

7.5 Current Nuclear Strategy

Every country charts its own course on nuclear weapons. From public statements and acknowledged procurements, it’s possible to get some idea of each country’s strategy, but you have to understand that they really don’t broadcast these things. I mean, they broadcast them, but we shouldn’t take those statements at face value. There are a host of reasons – diplomatic, strategic, domestic, that prevent leaders from being entirely candid with their nuclear plans.

When reading into strategies, I focus on questions like: what are the known capabilities of deployed weapons? How many nuclear weapons can a country deploy? What delivery methods does a country possess? Where are its weapons based? What advances in technology are politicians highlighting in public speeches? Where have they faced technical difficulties? What countries are they friendly with? Unfriendly with?

I would also recommend avoiding the common pitfall of obsessing over the total number of warheads a country possesses. This number is much less important than the count of operational or deployed warheads. In any significant nuclear exchange, it is unlikely that any warheads but those immediately at hand for deployment will be used.

This section represents my best guesses at the current nuclear strategies of various countries. Please treat these as speculation, not as fact.

7.5.1 Russia

Russia wants to keep its status as a major nuclear power, but it needs to do it on a tighter budget than the USSR had. This means a focus on land based ICBMs, no truly stealthy fighters, and limited resources for its SLBM program.

Current sanctions on Russia have disrupted Russian supply chains and applied pressure on Putin to slash military spending – right as he becomes more confrontational with the rest of the world. Russia can’t afford to fall behind in the nuclear arms race. Its second strike capability is the only thing stopping the US from giving it much harsher ultimatums. Significant budget cuts would put this second strike capability under threat. But on the other hand, Russia can only afford its current military budget for so long.

This statement falsified if: real stealth bombers enter service with a sticker price of >$500,000,000 per unit, Russia manages a string of successful SLBM launches in 2017, the international sanction regime against Russia collapses with Trump as US president.

7.5.2 China

China’s nuclear arsenal is less advanced than that of Russia or the USA. MIRV-ready missiles have been rolled out only in the last decade and many of their missiles still lack MIRV capability (but they do incorporate some decoys and countermeasures). In addition, Chinese missiles are kept unfueled and without warheads in place, which drastically increases their second strike response time. They make up for this with a massive network of decoy silos, real silos, and tunnels built into the mountains of Central China. China only has a handful of nuclear missile submarines and its conventional bomber force is fairly obsolete.

China’s nuclear policy is explicitly second strike only. Based on all the facts above and what I know about China, I’m inclined to believe this. Historically, China has never cared much about what happens outside of China (broadly defined, of course). Since China already enjoys massive conventional supremacy over its neighbours, it has no need of nuclear weapons to intimidate them.

This statement falsified if: China renounces no first use, China threatens a non-nuclear state with nuclear attack, China has >10 active ballistic missile submarines by 2020, China develops a new dedicated heavy bomber.

7.5.3 India and Pakistan

Neither of these countries have sprung for forces really capable of mutually assured destruction and only India maintains a full nuclear triad. Instead of adopting MAD, they instead both aim to have forces just big enough to make a nuclear attack by the other not worth the risk.

Since these countries really only need to be able to deter each other (and possibly China), they’re freed from the need to spend to keep up with the US or Russia. Both India and Pakistan lack the ability to launch a truly significant countervalue strike in response to a first strike from the US or Russia. Given how unlikely the US or Russia launching a first strike on India or Pakistan is, this is a sensible approach.

This statement falsified if: Either of these countries test Mt range thermonuclear weapons, either of these countries develops an ICBM capable of targeting the continental United States (range >11,000km), either of these countries increases nuclear funding by >200%.

7.5.4 UK and France

These countries keep nuclear weapons because they’re members of the UN Security Council and it comes with the territory. Neither has a particularly robust nuclear force (the UK only has American made Trident SLBMs, France has indigenous SLBMs and nuclear capable bombers). It’s largely a prestige thing though. Neither country has been particularly enthusiastic about the nuclear rigmarole (and its price tag) since the end of the Cold War.

Nuclear policy in the UK and France is closely tied to the nuclear policy of NATO, although both countries do maintain some ability to conduct nuclear war on their own terms. Neither country has ruled out using nuclear against non-nuclear states in response to attacks with conventional forces and France has specifically mentioned that they would be willing to use nuclear weapons against countries that sponsor terrorism against them.

All this being said, it is unlikely that France or the UK would be the ones to start a global nuclear war.

This statement falsified if: Either the UK or France increases their supply of operational warheads, either the UK or France develops a full nuclear triad.

7.5.5 North Korea

North Korea’s nuclear weapons program is especially difficult to assess. In addition to the normal challenges when trying to understand a classified program, there’s the bluster of Kim Jong-un to sort through. Up until recently, experts thought ICBM technology was beyond North Korea. They were thought to be struggling with the re-entry heat shield, struggling with miniaturization, struggling with the whole endeavour.

Now, people are less sure. Has North Korea gained full ICBM capability? Or is this more bluster and staged photographs? There’s probably a dozen men and women in the Pentagon (and in many other places) who would love to know the answer for sure. My personal guess, based on the evidence (and the bluster) is that North Korea has a missile design that in theory could target the US, but they’ll need a year or three to get it working reliably. I don’t think they’ll pull off a successful test this year, but I won’t be surprised if they pull one off in 2018 or 2019. That also seems to be the view of the Ploughshares Fund, an anti-proliferation non-profit.

Even if North Korea can’t attack the US, there’s still Russia, China, Japan and South Korea at risk from its shorter range missiles. This represents a considerable threat to a large number of people. It’s tempting to laugh off these threats in light of the inflated numbers that North Korea likes to give for the yields of their weapons (e.g. claiming a 6kt detonation was a hydrogen bomb that could wipe out the whole US). You could look at the disconnect as evidence of a fizzle, but personally I see it as evidence that North Korea likes to exaggerate. In September, they tested a bomb with a yield of 10-20kt. Fizzle or not, if delivered to Seoul, it would kill over 100,000 people.

Under Kim Jong-il, the prevailing belief was that the nuclear program was a bargaining chip in order to get free food or other concessions from other countries. Its purpose under Kim Jong-un is less clear. Despite punishing sanctions, Jong-un has maintained and expanded the nuclear weapon and missile programs started by his father. Whether he is willing to trade them in for concessions or wishes to use them in an attempt at unification is unknown.

This statement falsified if: North Korea successfully tests a true ICBM (range >5,500km) with successfully atmospheric re-entry by the end of 2017 and analysts believe it has enough additional payload for a miniaturized bomb.

7.5.6 Israel

Israel’s nuclear weapons remain unacknowledged, because Israel has pledged to not be the country that “introduces” nuclear weapons to the Middle East. Israel’s statement should be given all of the skepticism one would give to Bill Clinton using the word “is”. Israel may intend “introduce” to mean “acknowledge” or “deploy”, but we’re all pretty sure they don’t intend “introduce” to mean what it literally does.

Israel wants to have nuclear weapons as the ultimate hedge against military aggression by its neighbours. In addition, it wants to ensure that none of its neighbours possess them. Given the clear support for genocide that some of its neighbours have expressed, this position is understandable. If it appears likely that one of its regional foes will develop nuclear weapons, Israel is likely to launch a conventional attack to stop their development. If a conventional attack fails, a nuclear one is not out of the question.

Many sources talk about how Israel holds nuclear weapons as a “Samson option” and is prepared to use them to utterly annihilate an enemy if it looks like they are in a position to destroy Israel. This is actually how I’d expect most countries to behave, so I think the obsession with the Samson Option in Western reports on Israel’s nuclear program has more to do with the story it makes than a real difference between, say, France and Israel.

Israel probably possesses a full nuclear triad. Since it does not confirm or deny its nuclear program, there are no publically available official details that would allow us to be sure of this. It does make sense though. Israel has the technical know-how to pull off the tricky parts of a triad, like SLBMs.

In the future, we can expect Israel to continue to hold onto its arsenal and continue to neither confirm nor deny its existence. I don’t think Israel is a particularly likely candidate to touch off a nuclear war, as it is unlikely to use nuclear weapons against another nuclear armed state. That said, Israeli use of nuclear weapons would almost assuredly result in many civilian casualties and is still an eventuality that basically everyone would like to avoid.

This statement falsified if: Israel joins the NPT and allows inspectors into its nuclear facilities, Israel publically acknowledges its nuclear arsenal, Israel does not launch an airstrike against any nuclear program started by another Middle Eastern country.

7.5.7 Iran

Iran does not possess nuclear weapons, but as recently as 14 years ago was probably working on them. Most analysts believe that this work mostly stopped with the US invasion of Iraq. Iran had no particular desire to become (more of) an international pariah for developing nuclear weapons, but couldn’t accept the risk of Iraq developing them without an Iranian counter. Iran remembered the nerve agent attacks that Iraq unleashed (with the assistance of the US) during the Iran-Iraq war and felt that any developments in Iraqi weapons of mass destruction had to matched.

Iran has been prevented from coming clean about its past development of nuclear weapons by the belief (rightly or wrongly) than any admission will result in sanctions or attempts at regime change from Western actors.

Iran does have a well-developed civilian nuclear program. Despite the wailing and gnashing of teeth among hawks, the current nuclear deal should prevent any breakout towards nuclear weapons. The deal includes a robust enforcement and inspection regime that has most global powers convinced that Iran won’t be able to restart nuclear weapons work secretly.

Donald Trump’s talk of reversing this deal is just that: talk. It isn’t a bilateral deal between Iran and the USA, it’s a multilateral deal between Iran, the Permanent members of the UN Security Council, and Germany. The US could unilaterally re-impose sanctions, but there would be a significant diplomatic cost for basically no gain; it took a network of international sanctions to bring Iran to the negotiating table the first time around, so it is doubtful that US sanctions alone would change anything. The Iranian economy isn’t very integrated with the US economy, further diminishing the sting of any unilateral sanctions. Honestly, the US would probably suffer just as much from a fresh round of sanctions as Iran would.

This statement falsified if: Iran renounces the nuclear deal, Iran leaves the NPT, Iran refuses to allow inspectors access to a site they wish to visit, inspections turn up clear evidence of nuclear weapons development done since 2005.

7.5.8 The United States of America

When Vladimir Putin goes to his magic mirror and asks “mirror, mirror on the wall, who’s the greatest nuclear power of all?”, the answer is invariably “the United States”. In every nuclear metric that matters (so, discounting the total number of warheads), the United States reigns supreme. It has the best stealth bombers, the most accurate missiles, and the biggest fleet of nuclear submarines. As the world’s one remaining superpower, the United States is the only country that is able to mount even a half-way decent first strike – although it probably can’t launch a successful first strike against any triad state.

I don’t know what US nuclear policy will look like going forward. If Donald Trump maintains good relations with Putin, then a nuclear exchange with Russia will be (even more) unlikely. I do think a nuclear exchange with China has become slightly more likely as a result of Donald Trump’s election, but I hope the risk is relatively low.

No matter how you cut it, the risk of a nuclear exchange is – and always has been – low. But no one truly knows how low “low” is. Is it 10% over the Trump presidency? 1%? Whatever it is, I wish it was lower.

I also wish Trump was less of a loose cannon. I can’t really make predictions about America’s nuclear policy over the next few years because the information I have is too heavily weighted towards hyperbole and bluster.

< previous ^ index next >